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Identification of large-scale networks in the brain using fMRI
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bDepartment of Psychology, University of Montreal, Quebec, Canada
cCentre IRMf, 264 Rue Saint-Pierre, 13385 Marseille Cedex 05, France

Received 24 May 2005; revised 1 August 2005; accepted 25 August 2005

Available online 24 October 2005
Cognition is thought to result from interactions within large-scale

networks of brain regions. Here, we propose a method to identify these

large-scale networks using functional magnetic resonance imaging

(fMRI). Regions belonging to such networks are defined as sets of

strongly interacting regions, each of which showing a homogeneous

temporal activity. Our method of large-scale network identification

(LSNI) proceeds by first detecting functionally homogeneous regions.

The networks of functional interconnections are then found by

comparing the correlations among these regions against a model of

the correlations in the noise.

To test the LSNI method, we first evaluated its specificity and

sensitivity on synthetic data sets. Then, the method was applied to four

real data sets with a block-designed motor task. The LSNI method

correctly recovered the regions whose temporal activity was locked to

the stimulus. In addition, it detected two other main networks highly

reproducible across subjects, whose activity was dominated by slow

fluctuations (0–0.1 Hz). One was located in medial and dorsal regions,

and mostly overlapped the ‘‘default’’ network of the brain at rest

[Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional

connectivity in the resting brain: a network analysis of the default mode

hypothesis. Proceedings of the National Academy of Sciences of the

U.S.A. 100, 253–258]; the other was composed of lateral frontal and

posterior parietal regions.

The LSNI method we propose allows to detect in an exploratory

and systematic way all the regions and large-scale networks activated

in the working brain.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

During the past decade, investigation of cerebral activity has put

more and more emphasis on the analysis of the interactions within
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large-scale networks of brain areas (Horwitz et al., 1999; Varela et

al., 2001). It is now widely accepted that direct, indirect and

stimulus-locked interactions between spatially remote brain regions

can be measured by the correlation of their fMRI time series. This

correlation has been called functional connectivity (Friston, 1994).

While activation analysis allows to search for regions specifi-

cally activated during a task as compared to another, functional

connectivity makes it possible to explore which networks of regions

are strongly interacting for a given condition, without reference to

any control condition. The seminal work of Biswal et al. (1995) has

introduced (functional) connectivity maps to explore the network

connected with a seed region located in the primary motor cortex on

resting-state data sets. A connectivity map is a three-dimensional

volumewhose value at each voxel is the correlation between the time

series of this voxel and that of the seed region. A suitable threshold

applied to the map allows to identify the network of brain regions

functionally connected to the seed. It was suggested that such a

network includes mostly those regions with strong anatomical

connections to the seed, either direct or indirect (Xiong et al., 1999).

This technique was applied on resting-state data sets for a variety of

other non-motor seed regions, located in visual (Lowe et al., 1998),

language (Cordes et al., 2000) and cingulate (Greicius et al., 2003)

cortices, as well as subcortical regions (Stein et al., 2000). By

contrast, only few studies have investigated correlation maps for

subjects steadily performing a given task (Lowe et al., 2000;

Greicius et al., 2003), although many techniques concentrated on

comparing patterns of connectivity between tasks (McIntosh and

Gonzalez-Lima, 1994; Friston et al., 1997).

Although connectivity maps have proved to be a powerful tool,

the technique is not fully satisfactory. The exploration of brain

functional networks relies heavily on the choice of the seed region,

which allows to get insight only into the network associated with

this particular seed. In addition, for seed regions picked at random,

connectivity maps do not reveal meaningful cortical areas. They

are rather restricted to a few voxels close to the seed region or

dominated by noise, and comprise regions located in the ventricles,

blood vessels or the outline of the brain. To our knowledge, no

method has been proposed yet to overcome these issues.

http://www.sciencedirect.com


P. Bellec et al. / NeuroImage 29 (2006) 1231–12431232
Other approaches for identifying large-scale patterns of func-

tional connectivity exist that do not rely on a seed region. These

include principal components analysis (Friston et al., 1993),

independent components analysis (McKeown et al., 1998) and

fuzzy clustering (Baumgartner et al., 1998). These techniques were

initially developed in the general context of multivariate statistics,

and they optimize certain mathematical criteria, respectively: spatial

decorrelation, spatial independence and intracluster homogeneity.

Unfortunately, there is no clear and systematic relationship between

these criteria and functional connectivity within large-scale net-

works of brain regions.

In this paper, we propose a new method to identify the salient

large-scale networks of the human brain in an exploratory and

systematic way. Our approach is based on the main acknowledged

features of large-scale neural networks. According to Varela et al.

(2001), neural assemblies are defined as distributed local networks

transiently linked by (large-scale) reciprocal dynamic connections.

In the same paper, a local network is defined as a large patch (¨1

cm) of neural tissue that synchronizes its activity through the local

cytoarchitecture. This definition has its roots deep back to the

concept of Hebbian cell assemblies (Hebb, 1949), which are

groups of entities (neurons) that act together in a coherent fashion.

The same paper also defines large-scale dynamic connections as

interactions based on large fiber pathways among regions that are

far apart in the brain (>1 cm).

In fMRI, dynamic connections, either local or large-scale, are

thought to be reflected by high temporal correlation values (Horwitz

et al., 1999). The voxels belonging to a local network (region)

should therefore exhibit highly correlated time series (Zang et al.,

2004). Large-scale interactions moreover imply that the time series

of each region in the network exhibits strong correlation with the

time series of another distant region in the network. Such strong

correlations between time series may however also be related to the

spatially structured noise in fMRI (Cordes et al., 2002). The spatial

correlations of the noise must therefore be taken into account

when dealing with the practical identification of the network.

The large-scale network identification (LSNI) method proposed

in this paper consists of three steps described in Theory. Firstly, the

cortex is divided into disjoint and temporally homogeneous regions

(Finding homogeneous brain regions). Secondly, a procedure for

estimating the spatial correlations of the noise is described (Robust

estimation of the spatial correlation in the noise). Thirdly, the large-

scale functional connections are identified as outlier correlations

between distant regions that would not occur by chance in the

distribution of noise correlations (Identification of large-scale

networks). On synthetic data sets, we assess that the false-positive

rate of the method is controlled, and we investigate the ability of

our method to identify large-scale networks with various numbers

of regions and various signal-to-noise ratios (Application to

synthetic data sets). We give a description of the networks on real

motor data sets with a block-designed paradigm (Application to

real data sets). We finally discuss the relevance and limitations of

the LSNI method, as well as its potential applications (Discussion).
Theory

Finding homogeneous brain regions

The first feature of a large-scale functional network is that each

region of the network should be homogeneous, i.e. composed of
voxels whose time series share some similarity. We therefore aim

to segment the brain cortex into a set of disjoint regions, each being

a set of voxels connected with respect to 26-connexity, and such

that the resulting regions are functionally homogeneous according

to a certain criterion. This is achieved by means of a competitive

region growing algorithm, which is an iterative procedure for

image segmentation.

This procedure starts from small regions, in our case the set of all

singletons of voxels in the gray matter, that grow simultaneously at

each step by merging with other neighboring voxels or regions, on

the basis of a similarity criterion. As functional connectivity is

measured through correlation, we chose to measure the similarity

between two regions as the mean correlation between the time series

of any two voxels, each belonging to a different region. As all

regions compete at each step for merging, it is necessary to define a

merging rule. We used the mutual nearest neighbor principle

(Gowda and Krishna, 1977), which is designed to merge the most

similar regions at first. At each step, if the size of a region exceeds a

predefined critical value ts, it is validated and is not involved in the

merging process anymore. The algorithm stops when all regions

have reached the critical size, or when no more merging is possible.

The size of the validated regions ranges from to ts to 2ts � 2. More

details on the algorithm are given in Appendix A.

By construction, the resulting regions are connected and

disjoint. Moreover, they are as homogeneous as possible, accord-

ing to the similarity criterion, and have a controlled size. This step

is also a process of dimension reduction, as only the mean time

series yi of each validated region Ci will be considered for further

analysis:

yi ¼
1

LCi

X
v a Ci

yv; i ¼ 1; N ;N ; ð1Þ

where LCi is the number of voxels in region Ci, yv = ( yt,v)t = 1
T is

the time series of voxel v scaled to have zero mean and unit

variance, N is the number of regions identified by the region

growing method and T is the number of volumes in the acquisition.

The fMRI data set is thus reduced to an N � T array y:

y ¼ yt;i; t ¼ 1; N ;T; i ¼ 1; N ;N
� �

: ð2Þ

Robust estimation of the spatial correlation in the noise

To assess the existence of functional interactions between brain

regions, it is mandatory to take the spatial correlation of the noise

into account. Main factors contributing to this correlation include

partial volume effect, non-white measurement noise, preprocessing

steps (such as slice-timing correction or spatial filtering), physiol-

ogy-induced fluctuations and motion-related artifacts (Woolrich et

al., 2004). Yet some strategies have been proposed to reduce such

structured noise (Thomas et al., 2002; Perlbarg et al., 2004), some

residual correlations are still to be expected.

Statistical assumptions

The correlations in the noise can be estimated if we make a

spatial stationarity assumption. More precisely, assume the

following model of the fMRI time series y:

y ¼ uþ e; ð3Þ

where u is the part of y related to neural activity, and e is the noise.

We will assume that the noise is Gaussian, temporally independent

and identically distributed (i.i.d.). The model will be extended to
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the case of time-correlated noise in Identification of large-scale

networks. Formally, e = (et,i)i = 1
N , for t from to 1 to T, are some

independent samples from a multivariate Gaussian random variable

E = (Ei)i = 1
N , with mean m = (li)i = 1

N and variance–covariance

matrix � = (ri, j)i, j = 1
N . The spatial correlations in the noise are

assumed to be stationary, i.e. they only depend on the spatial

distance between regions:

ri; j ¼ rirjq jji� jjjð Þ; ð4Þ
where ri and rj are positive standard deviations, ||i � j|| is a

shortcut for the spatial distance (or lag) between regions and Ci

and Cj, for example the Euclidian distance between their centroids,

and q, the spatial correlogram, is a real-valued function that

satisfies q(0) = 1 and is bounded by �1 and 1. Such a spatial

model is valid if and only if the variance–covariance matrix � is

positive-definite (Cressie, 1993).

Robust estimation of the spatial correlogram

Estimating the correlation structure of such a temporally i.i.d.

and spatially stationary noise simplifies to estimating the spatial

correlogram q(h) for any spatial lag h. As we do not know what

regions are predominantly influenced by the noise, the whole set

Dh = {(Ci, Cj)| ||i � j|| = h} of pairs of regions at lag h is

considered for this estimation. However, the presence in Dh of

functionally connected regions is expected to bias the estimation.

As long as there are few such regions, we address this issue by

using the following robust estimate, based on the median:

r̂ hð Þ ¼ F�1 median F ri;j
� �

; Ci;Cj

� �
a Dh

� �� �
; ð5Þ

where F is the Fisher transform,1 and ri,j is the Pearson’s linear

correlation between the mean time series of the two regions Ci and

Cj. Under an asymptotic assumption, the estimate r̂ (h) is

unbiased. This estimation is moreover ‘‘robust’’: it is stable in

the presence of outliers, which here are the very regions of the

functional network.

In practice, in order to increase the number of observations and

consequently the statistical power, we do not estimate r̂
ˆ
(hk) of the

spatial correlogram for these spatial lags hk, k = 1, . . . , K:

r̂ ¼ r̂ h1ð Þ; N ; r̂ hkð Þ; N ; r̂ hKð Þð Þ: ð6Þ
Fig. 1. Rational-quadratic correlogram: the correlation between the time
Large and local scales

Once the correlation of the noise is estimated, it is possible to

study its features, so as to define a local scale and a large scale in a

data-driven way. However, the empirical estimator r̂ of the corre-

logram does not provide in general a positive-definite correlation

matrix. We therefore restrict ourselves to a parametric class of valid

correlograms, which was selected on the basis of the visual

inspection of the empirical values r̂ estimated on real fMRI data

sets. We use the following rational-quadratic model qq(h) (Cressie,

1993):

qqð0Þ ¼ 1;

qq
ðhÞ ¼ 1� h1 � h2

h2

1þ h2=h3
; 8h > 0;

8<
: ð7Þ

where q = (h1, h2, h3) is a parameter vector of three non-negative

real values satisfying h1 + h2h3 < 1. Such a parametric expression
1 F xð Þ ¼ 1
2
log 1 þ x

1 � x

��
. F(ri,j) has an asymptotic normal distribution with

mean, or median, F(q(h)) and variance T � 1 (Anderson, 1958).
defines a class of valid correlograms. This type of model decreases

rapidly from a correlation level between neighboring voxels q0+,

which defines a local-scale correlation, towards an asymptotic level

of correlation qV, which defines a large-scale correlation, and it is

possible to define a critical distance hV
e beyond which the correlo-

gram is almost equal to the asymptote, with a tolerance of e,
typically 0.01 (see Fig. 1). Formally, a rational-quadratic model can

be parameterized using (q0+, qV, hV
e) as detailed in Appendix B.

In the perspective of the large-scale network identification, we

need to define the large scale or, equivalently, the critical

distance hV
e . We thus determine the parameter set q* such that

rq* fits best the empirical values r̂ . The practical optimization

procedure is detailed in Appendix C. On the basis of these optimal

parameter values u*, a pair of regions is considered as being on a

large scale as soon as the distance between their centroids is higher

than h e
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2*h3*=e � 1ð Þh3*

p
(see Eq. (B.3)).

Identification of a large-scale network

Once the distribution of noise correlations has been estimated, it

is possible to search for outlier correlations between distant

regions, which are very unlikely to be due to noise. The set of

regions that exhibit an outlier interaction with at least one distant

region will compose the large-scale network.

Let us consider one large-scale interaction between regions Ci

and Cj at a distance h = ||i � j|| larger than hV
e. We wish to test

whether the correlation ri,j is likely to be found only by chance in

the noise distribution. Under the null hypothesis that the expected

value of ri,j equals the expected value of the noise q(h), the

following quantity is asymptotically normally distributed with zero

mean and unit variance (Anderson, 1958):

zi; j ¼
F ri; j
� �

� F q hð Þð Þ
rF

; ð8Þ

with rF
2 = T � 1 in the time i.i.d. case.

A departure from the temporally i.i.d. assumption due to a

positive temporal autocorrelation will result in an increase in

asymptotic variance rF
2 (Rodriguez, 1982). To correct such

possible bias, we estimate the standard deviation of F(ri,j). This

standard deviation with T observations of temporally correlated

noise can be thought of as the standard deviation rF for an
series of two regions is a parametric function of the spatial distance between

the regions. Graphical interpretation of the parameters q0+, qV and hV
q is

shown in the figure.
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equivalent number Teff of effective independent observations, as

was proposed in the context of the general linear model (Worsley

and Friston, 1995). To estimate the standard deviation, we resort to

a robust estimate, the median absolute deviation (Rousseeuw and

Croux, 1993):

r̂rF ¼1:48median jF ri; j
� �

�F q̂q hð Þð Þj; Ci;Cj

� �
a Dh;h	 he

V

� �
: ð9Þ

We replace q(h) and rF by their estimates in Eq. (8), and consider

the following quantity:

ẑzi;j ¼
F ri;j
� �

� F r̂ hð Þð Þ
r̂rF

: ð10Þ

On simulations, the distribution of zi,j in the presence of both time

and space correlations could be accurately approximated by the

distribution of zi,j in the absence of both space and time

correlations. This latter distribution is deduced from the known

distribution of F�1
ffiffiffiffiffiffiffiffiffiffiffiffi
T � 1

p
zi; j

� �
¼ ri; j for qi; j ¼ 0 (Anderson,

1958):

ffiffiffiffiffiffiffiffiffiffiffiffi
T � 2

p ri; jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r 2

i; j

q ¨ tT�2; ð11Þ

where tT � 2 is the Student’s t distribution with T � 2 degrees of

freedom.

Finally, a region Ci is included in the large-scale functional

network as soon as there exists a region Ci, with ||i � j|| 	 hV
e , such

that zi,j is significantly different from the expected value in the

noise. We have to perform a number of tests equal to the numberM

of pairs of regions such that the distance between them is larger

than hV
e. In order to correct this multiple testing problem, we apply

a Bonferroni correction, which is exact for independent tests and is

otherwise too conservative. If p is the type I error (false-positive

rate) of the whole procedure, the Bonferroni correction consists in

performing each test with a type I error p / M. We checked on

simulations that the empirical false-positive rate p was indeed

controlled, see Application to synthetic data sets.
Application to synthetic data sets

Synthetic data sets

All simulations used the partition of the gray matter into brain

regions, namely that obtained on real data sets for subject 1 (see

Data analysis). Time series with the same parameters as those of

the real data sets (i.e. T = 128, TR = 2.33 s) were simulated in these

regions with the following two different sampling procedures.

For the first simulation (S1), synthetic data sets met the null

hypothesis of a spatially stationary noise with no large-scale

interactions. The time series were composed of Gaussian noise,

time- and space-correlated, generated as follows. The space

correlation was based on a rational-quadratic parametric model,

with a critical distance hV
0.01 = 40 mm and various parameters q0+

and qV. Temporally independent Gaussian data sets with this space

correlation were generated as described in Cressie (1993), pp.

201–203, using a Cholesky decomposition of the space correlation

matrix and Gaussian random samples generated using Matlab\.2

The time series were then convolved with a Gaussian kernel, with
2 http://www.mathworks.com.
various Full-Width-at-Half-Maximum (FWHM), resulting in a

separable space– time correlation structure. The following param-

eters were used:

(S1)a: Spatial correlations close to those estimated on real data sets

(Results), small temporal correlation: q0+ = 0.1, qV = 0.001,

FWHM = 1 s.

(S1)b: Spatial correlations close to those estimated on real data sets

(Results), large temporal correlation: q0+ = 0.1, qV = 0.001,

FWHM = 5 s.

(S1)c: Large local spatial correlation, low asymptotic spatial

correlation, large temporal correlation: q0+ = 0.3, qV =

0.001, FWHM = 5 s.

(S1)d: Large local and asymptotic spatial correlation, large

temporal correlation: q0+ = 0.3, qV = 0.1, FWHM = 5 s.

A set of synthetic data sets was generated for each parameter set

q0+, qV, FWHM, as described in (S1)a–d, resulting in 6000

synthetic data sets in total.

For simulation (S2), the noise was both time- and space-

correlated, generated as in simulation (S1). The parameters of the

spatial correlation were set close to those estimated on real data

sets (Results), with a large temporal correlation: hV
0.01 = 40 mm,

q0+ = 0.1, qV = 0.001, FWHM = 5 s. In addition, some randomly

selected regions belonged to a functional network. In a basic

attempt to model such a functional network, the time series of these

selected regions were the sum of the noise and a single time series,

namely a given i.i.d. Gaussian time series. As it is common to all

regions of the functional network, this temporal trend induces a

high correlation of the time series of the regions that belong to the

network, regardless of the spatial distance between them. The

empirical variances of the noise sn
2 and the signal ss

2 were set so as

to obtain various signal-to-noise ratios (SNR), defined as follows:

SNR dBð Þ ¼ 10 log10 s2s=s
2
n

� �
:

We first investigated the influence of the SNR, with three

different values: �1.5 dB, �0.5 dB and 0 dB (corresponding

respectively to and ss
2
˚ 0.41, 0.47, 0.5 and sn

2
˚ 0.59, 0.53, 05).

For each SNR, we also tested different sizes of the network: 5%,

10%, 20%, 30%, 40% and 50% of the total number of regions. We

generated 250 synthetic data sets for each combination of SNR and

network size, resulting in 4500 synthetic data sets in total.

Methods

We used simulations (S1) and (S2) to investigate the

specificity and sensitivity of the LSNI method, respectively.

For each data set of simulation (S1), we applied the steps

described in Robust estimation of the spatial correlation in the

noise and Identification of large-scale networks to find signifi-

cant large-scale interactions, with various expected false-positive

rates p = 0.001, 0.01, 0.05, 0.1. As these data sets are only

composed of noise, the empirical false-positive rate q̂ is the ratio

between the total number of large-scale interactions detected as

significant and the total number of synthetic data sets. For each

synthetic data set of simulation (S2), the sensitivity of the

method was estimated as the proportion of regions in the

functional network detected by the method with p < 0.05. The

results were averaged over the 250 synthetic data sets for each

combination of SNR and network size.

 http:\\www.mathworks.com 
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Fig. 3. Sensitivity of the LSNI procedure for functional networks involving

perfectly correlated regions. The error bars indicate the 95%-percentile

intervals for the estimated sensitivity over all 250 data sets.
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Results

For all sets of parameters (S1)a–d, Fig. 2 shows the empirical

false-positive rates q̂ against the expected value p. The magnitude

of q̂ was of the order of the expected value p for any set of

parameters (S1)a–d. Increasing time or space correlation did not

appear to bias the control of the false-positive rate on these

simulations.

The sensitivity appeared to increase for networks involving

from 5% up to 20% of the total number of regions, regardless of

the SNR (see Fig. 3). Since a region of the network is detected as

soon as one large-scale interaction is detected, the larger the

network, the easier it is to detect each region, which explains such

an increase in sensitivity. For networks larger than 30% of the

cortex, the sensitivity sharply dropped and was zero for networks

involving at least half of the regions. This is due to an increasing

bias in the estimation of the structure of the noise, related to the

presence of the functional network.

Moreover, we found that the method performed well with a

SNR value greater than 0 dB but performed poorly, with a

sensitivity lower than 50%, for a SNR value lower than �1 dB.
Application to real data sets

Real data sets

Four right-handed male healthy volunteers (age: 25 to 27 years)

participated in an fMRI study of motor sequence learning. The

protocol was approved by the local ethic committee. One

functional run was analyzed for each subject. In this run, subjects

were alternating a control task and a motor sequence task,

following a conventional 30-s-long block-designed paradigm.

The control task consisted of looking at a fixation cross displayed

on a screen. The motor sequence task consisted of pressing the

keys of an MRI-compatible keyboard with the left (non-dominant)

hand, each key corresponding to one finger, following a given

sequence (4,1,3,2,4, numbering the fingers from the index to the

little). This sequence was performed at a fixed, comfortable rate of

2 Hz paced by an acoustic beeper. During the execution of the task,
Fig. 2. False-positive rate for simulation (S1) meeting the null hypothesis of

no large-scale interactions. The empirical false-positive rate for 1500

synthetic data sets is compared to the expected value with different

parameters for the space and time correlations (S1)a–d.
the following text ‘‘Sequence A: 4,1,3,2,4’’ was displayed on a

screen.

For each functional run, blood oxygenation level dependent

signals were recorded in 136 volumes, which were acquired using

a single-shot echo-planar imaging sequence (TR/TE = 2333/30 ms,

64 � 64 matrix, 42 contiguous slices, FOV = 192 mm � 192 mm,

slice thickness 3 mm and flip angle = 81-) on a Bruker 3.0 T MRI

scanner at the fMRI Center in Marseille.3 A high-resolution T1-

weighted scan was also acquired using the following MPRAGE

sequence: TR = 11.6 ms, TE = 5.67 ms, TI = 800 ms, 256 � 192 �
104 matrix, FOV = 256 mm � 230 mm � 182 mm and flip angle =

30-.

Data analysis

Preprocessing

On the one hand, the functional data were corrected of slice

timing and checked for motion using SPM99,4 and then corrected

of second-order polynomial time drifts. No correction of small

movements was applied as such correction could itself induce

some correlation in the time series to an unknown degree. To

improve the spatial stationarity of the noise, we reduced the noise

with a highly preponderant influence in well-localized brain areas

using a dedicated statistical procedure (Thomas et al., 2002;

Perlbarg et al., 2004). This procedure started with a spatial

independent component analysis (ICA) of the fMRI data using

the infomax algorithm5 (Bell and Sejnowski, 1995), initialized

using all components of a principal component analysis. The lateral

ventricles and basilar artery were then manually segmented on the

structural image of each subject. This segmentation was used to

extract time series predominantly influenced by cardiac, respiratory

and movement-related noise, and clearly unrelated to neural

activity. These time series were used to identify the independent

components related to physiological noise, whose contribution was

removed from the fMRI data set.

On the other hand, we segmented the gray matter from the

anatomical image using SPM99. This segmentation was considered
3 http://irmfmrs.free.fr/.
4 http://www.fil.ion.ucl.ac.uk/spmspm99.html.
5 http://www.sccn.ucsd.edu/fmrlab/.

 http:\\www.irmfmrs.free.fr\ 
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Fig. 4. Empirical (circles) and fitted (solid line) correlograms for the four subjects.

P. Bellec et al. / NeuroImage 29 (2006) 1231–12431236
as a mask of interest for further analysis. The anatomical images

were also spatially normalized in the standard stereotaxic space of

the Montreal Neurological Institute (MNI) using SPM99, and the

same transformation was applied to the regions identified by the

LSNI procedure.

Identification of large-scale networks

All procedures were implemented using Matlab\ 7.0. The

computation times indicated in Results were obtained for a

workstation with an InteliXeon\ 2.4 GHz processor and 1

gigabyte of memory. We applied the LSNI method as described in

Theory: firstly, we ran the region growing algorithm on the mask of

interest with a critical size of ts = 10 voxels; we then computed the

empirical correlograms for each subject, and identified significant

large-scale interactions with a false-positive rate p < 0.05.

Post-processing

Instead of describing individually all the regions detected by the

LSNI method, we grouped these regions into distinct functional

networks to simplify their visualization and interpretation. This

was achieved using a hierarchical clustering of the time series of

the regions with the Ward criterion as implemented in Matlab\.

The hierarchy was thresholded in an arbitrary way, in order to

obtain a minimal number of clusters while roughly preserving

functional coherence. To clarify which phenomenon gave rise to

the connectivity within a given cluster, we computed the first

principal component of the time series associated with the regions

of the cluster, as well as the Gaussian window Fourier transform of

this component.6

Results

The region growing procedure assigned most of the voxels

(range: 94% to 95% of the gray matter) to a homogeneous

region whose size varied from 10 to 18 voxels. The number of

regions was comparable from one subject to another (range:

1566 to 1767). This first step required the highest computation

time (22 to 29 min).

The shape of the empirical correlograms was very reproducible,

see Fig. 4, suggesting that a rational-quadratic spatial model was

well adapted. For spatial lags smaller than one half of the

maximum lag, the fit of the spatial model was very accurate. For

the largest lags, small departures from the fitted model were

observed, mainly due to the decreasing number of pairs of regions

used in the estimation. When computing the correlograms, the 10%

largest lags were not considered, as there were few pairs of such
6 http://www-stat.stanford.edu/~wavelab/.
distant regions, which made an accurate estimation of the correlo-

gram difficult. Estimated local and asymptotic correlations only

varied slightly across subjects: local correlation q0+ ranged from

0.08 to 0.11; asymptotic correlation qV was found to be almost

zero for all subjects (range �0.01 to 0). The critical distance hV
e

ranged from 25 mm to 43 mm. Estimation and fit of the

correlogram took from 21 s to 29 s by subject.

Once the correlation of the noise had been estimated, the large-

scale network was identified. This step required a little computa-

tion time (7 to 9 s). There was an important intersubject variability

concerning the size of the large-scale networks: 73, 134, 205 and

171 regions for subjects 1 to 4, respectively. Fig. 5 shows, for each

subject, the correlation matrix between the time series of all the

regions belonging to the large-scale network. Reordering the

correlation matrix using hierarchical clustering evidenced a clear

organization into functional clusters (Fig. 5a). The diagonal

squares associated with each cluster are shown in Fig. 5b. The

spatial location of each cluster numbered on Fig. 5 is described

hereafter, as well as the first principal component associated with

each cluster, which explained from 30% to 55% of the variance of

the time series in the cluster.

Cluster of activated regions

For all subjects, the first principal component associated with

one of the clusters was strongly correlated with the expected

response to the block-designed stimulus, as modeled with SPM99

using a box-car stimulus convolved by the standard hemody-

namic response function. This correlation was 0.85, 0.84, 0.74

and 0.76 for subjects 1 to 4, respectively. The cluster was the

largest in size for subjects 1 to 3 (number 1, see Fig. 5b), and the

third largest in size (number 3, see Fig. 5b) for subject 4. Some

regions were systematically found for all subjects (see Fig. 6a),

such as the right primary motor and sensorimotor cortices,

bilateral premotor cortex (z = 50), bilateral occipital cortex (z =

�8) and cerebellar cortex (z = �20). Other regions could be

found for at least 2 subjects, such as bilateral supplementary

motor area (z = 50), and bilateral insula (z = 16, 20). Fig. 6b

shows that the first principal component of each cluster was

indeed clearly related to the block-designed paradigm. The time-

frequency distribution of this component revealed a steady power

at the fundamental frequency of the stimulation (1/60 ˚ 0.016

Hz) (Fig. 6c).

Cluster of parieto-frontal regions

For all subjects, one cluster was predominantly located in the

lateral frontal and posterior parietal cortices. This cluster was the

second largest in size for all subjects (number 2, see Fig. 5b). The

spatial location of this cluster is displayed in Fig. 7a. Regions were

 http:\\www-stat.stanford.edu\~wavelab\ 
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Fig. 5. (a) Correlation matrix of the time series associated with the regions of the large-scale network of each subject. (b) Regions were grouped into distinct

functional clusters. Black squares show the within-cluster correlations inside the matrix of panel a.
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systematically found bilaterally in the superior parietal cortex (z =

45, 50), and in the lateral frontal cortex (z = �7, 25, 50). There

were additional regions in the cerebellar cortex (z = �20) and

bilaterally in the temporal cortex for three out of four subjects. The

first principal component of each cluster had a low correlation with

the expected response to the stimulation: �0.22, 0.1, �0.02, 0.35

for each subject, respectively (Fig. 7b). The time-frequency

distribution of this component did not reveal any steady power

at a given frequency, but the power spectrum was steadily located

in the [0,0.1] Hz band, and highly predominant in the [0,0.05] Hz

band (Fig. 7c).

Cluster of medio-posterior regions

For all subjects, one cluster was predominantly located

medially in the cingulate/precuneus and frontal cortices, as well

as in posterior regions. This cluster was the third largest in size for

subjects 1 to 3 (number 3, see Fig. 5b), and the largest in size for

subject 4 (number 1, see Fig. 5b). Fig. 8a shows the spatial location

of this cluster. Some regions were repeatedly found in the posterior

and medial regions, in the precuneus (z = 43, 50) and in the

posterior cingulate cortex (z = 24, 28) for subjects 2, 3, 4.

Moreover, some regions were also found in the medial part of the

frontal cortex (all slices) both ventrally and dorsally except for

subject 1, who only had dorsal regions. There were additional

regions in the superior and inferior parietal cortices (z = 28, 43,

50), and in the occipital cortex (z = 24). The first principal

component had low or moderate correlations with the expected
response to the stimulation: �0.04, 0.13, 0.33, �0.52 for each

subject, respectively (Fig. 8b). The time-frequency distribution

patterns of this component were very similar to those of the cluster

of parieto-frontal regions, with a power spectrum steadily

predominant in the [0,0.05] Hz band (Fig. 8c).

Other clusters

The remaining clusters were small and shared no clear

commonalities between subjects. A few typical examples of these

clusters are displayed in Fig. 9. Cluster 4 of subject 4 (Fig. 5b) had

a very bilateral spatial location (Fig. 9a) involving frontal, ventral

premotor and anterior cingulate cortices (z = 25, 34), as well as left

anterior cerebellar cortex (z = �8) and cingulate cortex (z = 6)

(Fig. 9a, first row). The first principal component had a time-

frequency distribution similar to that of the large non-activated

clusters (Fig. 9c, first row). Moreover, there was no clear strong

correlation between this cluster and any other one. Such a small

and isolated cluster might have been missed by the LSNI method

for the other subjects. Cluster 4 of subject 3 (Fig. 5) is another

small cluster with a medial spatial location (Fig. 9a, second row).

The power spectrum of the first principal component was steadily

located in the 0–0.1 Hz band (Fig. 9c, second row). This cluster

had strong correlations with both clusters 1 and 3 (Fig. 5b), which

shows the limits of functional clustering: as clusters 1 and 3 were

only weakly correlated, it was therefore impossible to define a

large homogeneous cluster comprising both clusters 1, 3 and 4.

Cluster 5 of subject 4 was an example of a very small cluster



Fig. 6. Cluster of activated regions: regions of this cluster have a stimulus-locked activity, and are mainly located in the motor system. (a) Spatial location for

each subject, superimposed on the corresponding axial slice of the anatomical image (left on the image is left of the brain). (b) First principal component of the

time series associated with the cluster. (c) Gaussian window Fourier transform of the first principal component (arbitrary units).
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located near large blood vessels (Fig. 9a, third row). The power

spectrum of the first principal component was spread over all the

frequencies (Fig. 9c, third row). The time-frequency distribution

associated with this cluster is a strong indication that it is

dominated by residual physiological noise. It did not show any

strong correlation with other clusters of the large-scale network.
Discussion

The LSNI method proposed in this paper consists of three steps:

definition of homogeneous regions, estimation of the correlation in

the noise and identification of large-scale networks. These steps

were designed under the following hypotheses regarding the

statistical properties of the noise:

(1) The noise is predominant, i.e. the time series in most brain

regions are only noise. We proved on fully synthetic data

sets that it was possible to achieve a sensitive detection of a

network with 30% of the cortex included in the network.

While such performance cannot strictly be extended to real

data sets, we can notice that, in most fMRI studies, effects of

interest are reported in less than 30% of the brain, which is

quite compatible with this result.
(2) The noise is Gaussian. Although we did not investigate the

robustness of our method to departures from a Gaussian

distribution, this hypothesis is thought to be roughly exact

for fMRI data sets. Even if a Gaussian distribution may not

be strictly valid for the time series, it may still hold

asymptotically for the Fisher transform of the correlations.

(3) The noise is spatially stationary. More sophisticated models

of the noise in fMRI have already been proposed, including

separable stationary (Kruggel et al., 2002), non-separable

stationary (Benali et al., 2001) and non-separable non-

stationary (Woolrich et al., 2004) models. However, these

works did not concentrate on large-scale correlations in the

noise, that were expected to be reduced or even suppressed

using a noise reduction strategy prior to the modeling step

(Woolrich et al., 2004). We proposed that a first step towards

modeling the residual correlations in the noise is an

hypothesis of stationarity on the gray matter. We also took

the temporal autocorrelation of the noise into account by

estimating the variance of the Fisher transform of the

correlations (Identification of large-scale networks), and by

further neglecting the influence of temporal correlation. This

correction is analogous to the estimation of effective degrees

of freedom applied in the context of the general linear model

(Worsley and Friston, 1995). We did not investigate



Fig. 7. Cluster of parieto-frontal regions: regions of this cluster have a low-frequency temporal activity, and are mainly located in the posterior parietal and in

the lateral frontal cortices. (a) Spatial location for each subject, superimposed on the corresponding axial slice of the anatomical image (left on the image is left

of the brain). (b) First principal component of the time series associated with the cluster. (c) Gaussian window Fourier transform of the first principal

component (intensity in arbitrary units).
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theoretically to which extent this estimation could be biased

by spatial correlation. However, it proved sufficient on

simulations of temporally and spatially correlated Gaussian

noise.

(4) The spatial correlation of the noise is a rational-quadratic

function of the spatial (Euclidean) distance. The reproduci-

bility of the shape of the empirical correlograms over

subjects, as was observed on real data sets, supports the use

of this parametric model. Besides, the choice of the distance,

e.g. Euclidean or geodesic, is not crucial. The large-scale

effects were indeed almost constant beyond some critical

distance, so the only expected difference between the

Euclidian and the geodesic distance is the local shape of

the correlogram, but not its asymptotic behavior. The

Euclidean distance was the easier to handle.

An important parameter of the LSNI method is the critical

size of the brain regions we used in the region growing

algorithm. We used a critical size of 10 voxels with an in-plane

resolution of 3 � 3 mm2 because it roughly corresponds to a 1

cm2 patch of cortex, compatible with the expected size of the

local networks (Varela et al., 2001). This critical size moreover

leads to less than 2000 regions on the cortex. This appeared as a
trade-off between spatial resolution and numerical tractability

when handling the correlation matrix. We did not systematically

investigate the influence of the critical size parameter on the

whole procedure.

We assessed the false-positive rate of the LSNI method under

the null-hypothesis (pure noise) using fully synthetic data sets,

with both simulated noise and simulated functional networks. In

many studies, the noise comes from real resting-state data sets,

e.g. Lu et al. (2003), and only the functional activity is simulated.

In resting-state time series, the noise is indeed truly realistic,

although there remains a spontaneous neural activity in the brain.

For methods based on the general linear model, this activity can

fairly be considered as independent of the simulated activity, and

does not interfere with the detection procedure. Such an

assumption does not hold in our case because spontaneous

interactions within brain regions at rest cannot be neglected when

large-scale functional interactions are concerned. We therefore

used fully synthetic data sets made as similar as possible to real

data sets: same location of regions, same number of time samples

and same parameters of the spatial correlation as estimated on

real data sets.

Before applying the LSNI method on real data sets, some

preprocessing was necessary. Among these, a gray matter



Fig. 8. Cluster of medio-posterior regions: regions of this cluster have a low-frequency temporal activity, and are mainly located in the posterior cingulate, the

medial frontal cortex and in posterior regions. (a) Spatial location for each subject, superimposed on the corresponding axial slice of the anatomical image (left

on the image is left of the brain). (b) First principal component of the time series associated with the cluster. (c) Gaussian window Fourier transform of the first

principal component (intensity in arbitrary units).
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segmentation was conducted, which makes the hypothesis of

spatial stationarity of the noise more plausible than for a whole

brain analysis. The noise reduction step was of considerable

importance, because spatially localized noise is clearly a

confound for our method, as it is for any functional con-

nectivity-based method. We used one of the few available

procedures for long TR acquisition, while it is still not fully

automated and requires a manual segmentation of the ventricles

and basal artery. This step will profit of future works in the field

of noise reduction.

Once the large-scale networks were detected using the

LSNI method, a post-processing was applied in order to fa-

cilitate the interpretation of the results. It consisted of

grouping the identified regions into distinct subnetworks using

hierarchical clustering. Our aim was to describe as simply as

possible the networks that we found, in order to discuss

whether or not they were relevant from a functional point of

view. Hierarchical clustering appeared well-suited for this

purpose, even if the number of clusters had to be specified

arbitrarily. Many other ways to analyze the structure of large-

scale networks proposed so far in the fMRI literature do not

require to specify such arbitrary parameters, e.g. multi-dimen-

sional scaling (Salvador et al., 2005) or functional integration
(Tononi et al., 1998), and could highlight other aspects of the

connectivity patterns.

Results on real data sets showed that the main features of the

correlogram were reproducible across subjects (hV
e
¨3 cm and qV

¨0). Given these parameters, it is interesting to notice that the

identification of the large-scale network roughly simplifies to

finding non-zero correlation between regions more than 3 cm apart.

However, it is not fully elucidated yet whether this result is general

or whether it depends on field strength, sequence type or

preprocessing strategies.

Some small networks were not reproducibly found across

subjects. As simulations showed that our method was less

sensitive for small networks than for large ones, this effectively

implies a large inter- and intrasubjects variability for small

networks. Moreover, the time-frequency analysis showed that

some clusters were physiology-induced false-positives. Such issue

could be overcome by improving the noise reduction step, or by

identifying a posteriori regions whose power spectrum contains

high frequencies.

The large functional clusters shared many characteristics

across subjects, despite an important variability concerning their

sizes. First, all subjects had a cluster of regions with stimulus-

locked activity. Although not surprising, finding this cluster is a



Fig. 9. Other clusters: typical examples of clusters that did not share clear commonalities across subjects. (a) Spatial location of the cluster, superimposed on the

corresponding axial slice of the anatomical image (left on the image is left of the brain). (b) First principal component of the time series associated with the

cluster. (c) Gaussian window Fourier transform of the first principal component (intensity in arbitrary units).
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first-step validation of the LSNI method. For all subjects, there

were also two large clusters whose temporal activities were

dominated by low-frequency fluctuations (0–0.1 Hz). Such low-

frequency fluctuations have been consistently reported for func-

tional connectivity at rest (Biswal et al., 1995; Cordes et al.,

2001). The spatial distribution of the medio-posterior cluster

involving posterior cingulate was remarkably similar to the

connectivity map reported by Greicius et al. (2003), obtained

using a seed region in the posterior cingulate at rest, and which

overlaps the so-called ‘‘default-mode network’’. The same work

reported that the map was minimally disrupted during a simple

visual task, hence this network could also be expected in our

motor paradigm. The default-mode network is thought to

contribute to the ‘‘deactivation’’ phenomenon, i.e. regions

exhibiting a stronger activity during rest than during a task

(Gusnard and Raichle, 2001), and moreover includes most

regions of the parieto-frontal cluster.

Because it is an exploratory method that does not rely on an

explicit model of the acquisition, the LSNI method allows to

explore new types of data sets. For instance, as far as resting-state

data sets are concerned, only isolated individual subnetworks

have been studied in the literature, partly because selecting the

regions was a hard task. A systematic study of the relations

between subnetworks in the resting-state could be handled using

the LSNI procedure. Also, an extensive study of the brain large-

scale networks would have important clinical applications, for

example it would help to better distinguish between Alzheimer’s

disease and healthy aging (Greicius et al., 2004). The LSNI

method would also allow to select subnetworks for which it

would be possible to apply more hypothesis-driven methods, such

as structural equation modeling (McIntosh and Gonzalez-Lima,

1994) or dynamical causal modeling (Friston et al., 2003),
without excluding important nodes from a functional connectivity

point of view.
Conclusion

In this paper, we have proposed a method for large-scale

network identification (LSNI) in fMRI on the basis of two main

spatial features, namely the local temporal homogeneity of the

regions and the existence of strong large-scale interactions. To

achieve this identification, the spatial structure of the noise was

robustly estimated. A simulation study demonstrated that the

procedure correctly controlled the false-positive rate, and was

indeed able to identify functional networks involving up to 30% of

the cortex. On real data sets with a block-designed motor task, both

temporal and anatomical features of the large-scale networks

strongly support that the regions identified by the method indeed

have large-scale functional connections. This work provides a first

statistical formulation of the large-scale network identification

problem, and enables the systematic identification of the salient

networks of the working brain.
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Appendix A. Competitive region growing algorithm

The goal of the algorithm is to partition the set of all voxels on

the brain cortex into a set F of regions C that are connected,
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disjoint, of a given size t s 	 1, and that are optimally

homogeneous, according to a measure that is the sum of all

regional homogeneities defined hereafter:

hom Cð Þ ¼ 2

LC LC � 1ð Þ
X

v;wa C;vw

corr yv;ywð Þ;

where corr is Pearson’s linear correlation, LC is the number of

voxels in region C, and yu = ( yv
t)t = 1
T is the time series of voxel v.

The associated similarity measure between two regions is:

s C;Dð Þ ¼ 1

LCLD

X
v;wð Þ a C�D

corr yv;ywð Þ:

Finding the best set F is computationally hard, and could even be

impossible if the number of voxels was not a multiple of the critical

size ts. The proposed method to find a ‘‘good’’ set F is an iterative

procedure derived from Clustering Algorithm for Medical Image

Sequences, CAMIS (Benali et al., 1994). At step n, let En denote all

regions that are candidates for merging, and denote by Fn the set of

regions that have already been validated.

At the initial step (n = 0), regions are singletons of voxels, all

are candidates for merging and none is validated yet:

E0 ¼ vf g;vaMf g; F0 ¼ <:

At step n, the first condition for a pair of candidate regions to

merge is that those regions are neighbors. Let N vð Þ denote the

standard 26-connexity neighborhood for voxel v, and let us define

the neighborhood of a region C in En as follows:

N n Cð Þ ¼ Da En; D m Cj9 v;wð Þa C � D;waN vð Þf g:

A pair of neighboring regions (C, D) in En � En will merge if it

fulfills the following mutual nearest neighbors condition (Gowda

and Krishna, 1977):

mnn C;Dð ÞS
C ¼ arg min

K a N n Dð Þ
s K;Dð Þ

and

D ¼ arg min
L a N n Cð Þ

s C;Lð Þ
:

8><
>:

A region of En is validated if its number of voxels is greater or

equal to the critical size ts:

Fn þ 1 ¼ Fn? C?DjC; Da En;mnn C;Dð Þ; L C?Dð Þ 	 tsf g:
At next step, regions candidate for merging are those that have

not merged at this step, or those that are still too small to be

validated. We thus define En + 1 as follows:

En þ 1 ¼ C?DjC; DaEn;mnn C;Dð Þ; LðC?Df Þ < tsg
? C a Enj9 m Da En;mnn C;Dð Þf g:

The algorithm stops if En = < or if there remains no pair of

regions in En that verifies the mutual nearest neighbors criterion.

As the number of regions in En is an integer and strictly

decreases at each step, as long as pairs of mutual nearest neighbors

still exist, the algorithm necessarily stops at some point. The final

set of homogeneous regions F is the set Fn once convergence of

the algorithm is achieved. Note that the size of a validated region

ranges from ts to (2ts � 2), because it is possible that two regions

of size (ts � 1) merge during the growing process. Moreover, if the

set En is not empty once convergence is achieved, the final set Fn

is not a partition of all voxels because some voxels remain that do

not belong to any validated region. These voxels are discarded

from further analysis.
Appendix B. Parametric model for spatial correlogram of

fMRI data sets

The rational-quadratic model of the spatial correlogram as

defined in Eq. (7) can be parameterized by the following quantities,

which have a simple graphical interpretation as illustrated in Fig. 1:

q0þ ¼ lim
hY0þ

qh hð Þð Þ; 0 < q0þ V 1;

qV ¼ lim
hYþV

qh hð Þð Þ; 0 < qV < q0þ;

he
V ¼ min h > 0:qh hð Þ � qV < ef g; 0 < e < q0þ � qV

8><
>:

ðB:1Þ
The following relations link the parameters q = (h1, h2, h3) of

Eq. (7), and the parameters of interest q0+, qV and hV
e :

h1 ¼ 1� q0þ;

h3 ¼ e
q0þ � qV � e he

V

� �2
;

h2 ¼ q0þ � qV

he
V

�
q0þ � qV � e

e

��
;

8>><
>>:

ðB:2Þ

and

q0þ ¼ 1� h1;
qV ¼ 1� h1 � h2h2;
he
V

� �2 ¼ h2h3
e � 1

��
h3:

8<
: ðB:3Þ
Appendix C. Optimization procedure for the parametric

spatial model

Let qq be a valid correlogram model, and let us consider the

Fisher transform of both the expected and empirical values of the

correlogram at lags (h1, . . ., hK):

zq ¼ F qq h1ð Þð Þ;N ;F qq hKð Þð Þð Þ; ẑz ¼ F r̂ h1ð Þð Þ;N ;F r̂ hKð Þð Þð Þ:
In the asymptotic assumption of a Gaussian distribution for

F(q(hk)), with no space–time correlation, maximizing the prob-

ability of observing ẑ for a given zq is equivalent to minimizing

the following cost function:

XK
k ¼ 1

LDhk F r̂ hkð Þð Þ � F qq hkð Þð Þf g2: ðC:1Þ

where LDhk
is the total number of pairs of regions at spatial lag hk.

The general least-squares fitting consists in finding the parameters

q* that minimize the cost function (C.1). Although the effect of

space and time correlations is neglected, such a cost function still

weights differently each spatial lag depending on the number of

observations #Dhk
(Cressie, 1993).

In the optimization procedure of the parameters q, only the

spatial lags less than half the largest lag were considered, following

the recommendations of Journel and Huijbregts (1978). Optimiza-

tion of the cost function (C.1) was achieved using the Nelder–

Mead method implemented in Matlab\, starting from a random

initialization. This step was repeated until the parameters could not

be improved for 50 iterations, in order to avoid local minima.
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