Aller au contenu. | Aller à la navigation

Outils personnels

Plateforme - ACCES
Navigation

Enseigner les Sciences de la nature

logo ensl   Logo du ministère de l'éducation
logo CIRI logo Immuniser Lyon
logo LBMC logo Musée Mérieux
Logo Inserm igfl igfl logo CREATIS
Logo du Museum national des histoires naturelles
Logo du musée de Confluences
logo geo 3d
Logo de Lyon 1 logo lgltpe 
Logo du Museum national des histoires naturelles
Logo du musée de Confluences
logo LBMC
logo LBMC
logos composé logo COP In My City logo Investissement d'avenirLogo du musée de Confluences
logo Météo France Logo du musée de Confluences
logo EVSlogo Grand Lyon
logo UDL
Logo Auvergne-Rhone-Alpes
logo UNISCIEL

Classe de terminale spécialité SVT

Par Naoum Salamé Dernière modification 24/11/2020 12:13

La Terre, la vie et l’organisation du vivant

Génétique et évolution

Cette partie s’inscrit dans une logique d’approfondissement des acquis des années précédentes, notamment des concepts de biodiversité et d’évolution. Dès la classe de seconde, la diversité génétique et les processus évolutifs ont été abordés dans le contexte de la biodiversité. En classe de première, les mécanismes à l’origine des mutations ont été identifiés, ainsi que leurs effets sur la santé humaine. En classe terminale, il s’agit de comprendre comment la reproduction sexuée forme des génomes individuels et contribue à la diversification du vivant, aux côtés d’autres processus génétiques et non génétiques. L’élève consolide ses acquis en génétique et découvre les techniques qui aboutissent à la connaissance du génome de chaque individu. Il comprend que l’hérédité n’est pas exclusivement liée à l’ADN.

Connaissances

L’origine du génotype des individus

La conservation des génomes:stabilité génétique et évolution clonale

En enseignement de spécialité de la classe de première, les élèves ont appris que la succession de mitoses produit un clone, c’est-à-dire un ensemble de cellules, toutes génétiquement identiques, aux mutations près. Ces clones sont constitués de cellules séparées (cas des nombreuses bactéries ou de nos cellules sanguines) ou associées de façon stable (cas des tissus solides).

En l’absence d’échanges génétiques avec l’extérieur, la diversité génétique dans un clone résulte de l’accumulation de mutations successives dans les différentes cellules. Tout accident génétique irréversible (perte de gène par exemple) devient pérenne pour toute la lignée (sous-clone) qui dérive du mutant.

Le brassage des génomes à chaque génération:la reproduction sexuée des eucaryotes

La fécondation entre gamètes haploïdes rassemble, dans une même cellule diploïde, deux génomes d’origine indépendante apportant chacun un lot d’allèles. Chaque paire d’allèles résultant est constituée de deux allèles identiques (homozygotie) ou de deux allèles différents(hétérozygotie).

En fin de méiose, chaque cellule produite reçoit un seul des deux allèles de chaque paire avec une probabilité équivalente. Pour deux paires d’allèles, quatre combinaisons d’allèles sont possibles, équiprobables ou non en cas de gènes liés.

Le nombre de combinaisons génétiques possibles dans les gamètes est d’autant plus élevé que le nombre de gènes à l’état hétérozygote est plus grand chez les parents.

Capacités, attitudes

Comprendre la notion de clone à partir de divers exemples tirés de l’agriculture ou du domaine de la santé (cellules cancéreuses, lymphocytes B producteursd’un seul anticorps, clones bactériens).

En fonction du nombre de cellules de l’organisme humain, estimer le nombre théorique de mutations (connaissant le nombre moyen de mutations à chaque division cellulaire) qui surviennent dans l’organisme humain, lors de son développement.