XMLmind XML Editor - Configuration
and Deployment

Hussein Shafie
Pixware

<xm edi t or - support @ni m nd. con

XMLmind XML Editor - Configuration and Deployment

Hussein Shafie
Pixware
<xmleditor-support@xmlmind.com>

Published December 2, 2005

Abstract

This document describes how to customize and deploy XXE.

Table of Contents

[T 1o T TP PRSPPI 1
O L1 oo [V (o] TP PTRRPN 2
2. Writing a configuration file Tor XXE ... 3

1. DTD BXAMPIE ...t 4
2. W3C XML SChema BXAMPIEot 6
3. RELAX NG BXAMPIE ..ot 8
3. Customizing mouse and key bindings used by XXEoooiiiiiii 10
1. XML application Specific DiNAINGScoouuiiiiiiiii e 10
2. GENEIIC DINGINGS ...evvteeeii e e et et ettt e e e e eeen 10
4. Using HTMLA4 tables or CALS tables in your own cUStOm SChEMAoevvvviiiiiiiinieiiiiineeenenn, 12
L HTMLA BADIES ... e ettt e e 12
1.1. HTMLA table COMMANSiiiiiiiiiiii e 13
1,02, tableCOIUMN .t e e e 13
1.0.2.1ADIEROW ...t 13
2. HTMLZ FOrM EIEMENES ...ttt 13
B CALS HADIES e 14
3.1. CALS table COMMANGSeeiiiiieeiii e e et 15
3.1.1. tableCOIUMN ..uu e 15
312 tADIEROW ..ot 15
5. Customizing an existing CONfIGUIAtIONccouuuiiiiiiiiiii e 16
1. Structure of a configuration file customizing an existing configurationccccoooeeieis 16
2. CUSOMIZALION TEBIMS . .ut ettt ettt et 17
2.1, Custom CSS Style SNEEL ... 17
2.2, CUSEOM DINAINGS - eieti et 18
2.3, CUSEOM TO00 DA ... e 18
2.4, Custom parameters for the XSLT style sheet used to convert DocBook documents to
RTF, POSESCript and PDF ... e e 18
2.4.1. Extensively customizing the CONVErsion ProCeSScccuvvieerriineeeriinneennns 19
B. DEPIOYING XXE . ittt e et et et e 21
1. Dynamic diSCOVErY OF ad0-0NSuuiiiiiiieeiii e 21
1.1. The lookup phase during XXE STartUpcoveeerinieiiiieeiiie e 21
1.2. Files containing the add-0NScoouiiiiiiiii e 22
2. Centralizing add-0nS 0N @ HTTP SEIVETccouuiiiiiiii e 24
3. Deploying XXE using Java™ WD SEArtccoouuiiiiiiiinieieiiieeei e 25
3.1. The deploywebstart command-1ine toolc.oooiiiiiiiiiiii e 25
3.2. Deploying XXE using Java™ Web Start, a step by step descriptioncc....cccee. 27
3.3. Comparison between deployment using Java Web Start and just centralizing the add-
ONS ON @ HTTP SBIVEL ...ttt e 29

[l RETEIBICE ..o e 30
7. Configuration EIEMENTS ciiit e ettt 31

Lo BINAING oo e 31
2. COMIMANG <.ttt ettt et ettt ettt ettt e et et et e e eeaens 35
3L CONFIGUIALION ...ttt 35
A S ittt e 36
ST | OO TPPPPPPPPTTIIN 37
T (=1 =T PP PP UPPPPTPUPPPRN 37
7. AOCUMEBNTHOOK ... et 42
8. UOCUMENTRESOUITES ... ettt ettt et ettt e e ettt e e et e e et e e era e eeees 43
9. elemMENITEMPIALEet e e et 44
10 NI ettt 45
11, iMAGETOONKIT ...t e 46
L2, INCIUGE ... 49
L3 MBNU e 49

13.1. MUIEIPIE MENUS ...t 50
14, NEWEIEMENICONTENT ...ttt e 51

XMLmind XML Editor - Configura-
tion and Deployment

T 0] (0] o< 1 Y PP 52
O o= - L1 (T (T (0]] PP 52
L7 PIESEIVESPACE .. vttteteiie ettt et e e e e e e 53
ST -1 - 013 o PPN 53
S TS V=T o o] P 54
20, SCRBIMA ..ttt 56
21, SPreadsheEtFUNCIIONS iiiii et e e e e e e e e ees 56
B (-] 110 PN 57
P22 N (00 [= T PR 57

23.1. MUILIPIE TOOIBAIS .. .vvveii e e e e e 58
24, TTANSIALION ...t e 59
25, WINAOWLAYOULiitt i e e e e e e e e e e e et e e e aanas 60

Part |. Guide

Chapter 1. Introduction

XMLmind XML Editor (XXE for short) is an XML editor designed for production use. Unlike many other XML
editors, its user interface does not allow to do simple things such as:

e Open an XML document in the editor and, after this, use a dialog box to associate a DTD and/or a style sheet
to the newly opened document.

» Selecta DTD or an XML Schema using a file chooser and then, use another dialog box to select the root element
of a new document (conforming to the chosen DTD or XML Schema).

The above features are useful if you muse with an XML file from time to time. They are almost never needed in
production use, for example, writing a book ten hours a day.

Out of the box, XXE can be used to author XHTML, DocBook, Simplified DocBook and Slides documents with
a good personal productivity.

But if you need to achieve excellent productivity for a group of users in your organization or if you need to use a
proprietary DTD, W3C XML Schema or RELAX NG schema, you'll have to customize XXE configurations for
XHTML, DocBook, Simplified DocBook and Slides or you'll have to write a custom configuration for your pro-
prietary DTD, W3C XML Schema or RELAX NG schema from scratch.

In an organization, the task of writing a configuration file for XXE is ideally performed by a single person, who
belongs to the group of XML authors, but who is specially motivated by becoming the local guru.

» The local guru really needs to understand the job of the group of XML authors which will use XXE.

» The local guru really needs to be motivated because she/he will have to read tons of documentation: XXE
documentation, but also many W3C standards such as XML, CSS, XPath, etc.

» The local guru does not need to be a programmer, or even a member of the IT staff.

If you don't have a person with the profile of a local guru, you may consider hiring an external consultant for a
few days.

http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/xpath

Chapter 2. Writing a configuration file
for XXE

A configuration file is a XML file (constrained by W3C XML Schema XXE_i nst al | _di r /addon/config/con-
figuration/xsd/configuration.xsd) that customizes XXE for a specific XML application. XXE is bundled
with configurations for the following XML applications: DocBook, Simplified DocBook, Slides, XHTML, XXE
Configuration, XML Schema.

This section describes how to write a configuration for a custom DTD, for a custom W3C XML Schema and for
a custom RELAX NG schema. What is described is the recommended way of doing things. This being said, it is
also possible to use XXE without writing any configuration file for a custom XML application: see side bar below.

The configurations used as examples are minimal configurations. The following configuration items are not described
in this section:

* Named element templates. See elementTemplate.

» Custom commands implemented in the Java™ language. See command.

* Macro commands. See command.

* Menu bar menu. See menu.

» Tool bar buttons. See toolBar.

» Popup menus. See binding.

* Mouse and/or keyboard bindings. See binding.

Please read Configuration elements if you need to use any of these customization items.

The configurations used as examples are found in XXE_i nst al | _di r /doc/configure/samples/examplel/, ex-
ample2/, example3/.

Another configuration, using W3C XML schemas like example2 but much more comprehensive, is found in
XXE_i nstal | _di r /doc/configure/samples/imagedemo/. This configuration has been created to explain how
to cope with XML documents containing embedded binary (i.e. TIFF, PNG, etc) or XML (i.e. SVG) images.
However, it is also useful as an example of an XXE configuration.

Writing a configuration file for XXE

Q: How to use XXE without writing a configuration file for my XML application?

A: Use File|Open As Template and select an existing document each time you need to create a new document
of the same type. See XMLmind XML Editor - Online Help for a description of this command.

If you want to use the styled view, the document selected for use by File|Open As Template must contain
one or several <?xml-stylesheet?> processing instructions.

This processing instruction is specified in the W3C recommendation Associating Style Sheets with XML
Documents.

Example of document intended to be ““opened as template":

<?xml version="1.0" encoding=""UTF-8" ?>
<?xml-stylesheet type="text/css" alternate="yes" title="Big fonts"
href="http://www.xmImind.com/css/examplelb.css" ?>
<?xml-stylesheet type="text/css" alternate="yes" title="Important things in red"
href="http://www.xmImind.com/css/examplelr.css" ?>
<?xml-stylesheet type="text/css"
href="http://www.xmImind.com/css/examplel.css" ?>
<IDOCTYPE doc PUBLIC "-//XMLmind//DTD Examplel//EN"
“http://www.xmImind.com/dtd/examplel.dtd">
<doc>

<para>Paragraph 1.</para>

<para>Paragraph 2.</para>

<para>Paragraph 3.</para>
</doc>

Using XXE this way works fine but really requires you to specify absolute URLSs for the DTD and CSS in
the ““template"”.

1. DTD example

1.

Create a subdirectory named examplel in the addon/ subdirectory of XXE user preferences directory.
XXE user preferences directory is:

e $HOMVE/ .xxe/ on Unix,

e UgystenDrivedDocuments and Settings\%SERNAMEYA\Application Data\XMLmind\XMLeditor\
on Windows 2000/XP,

e UBystenDri veddwinnt\Profiles\YSERNAVEXAApplication Data\XMLmind\XMLeditor\ onWindows
NT.

Next chapter explains how to create a configuration which can be shared with other users. For now suffice
to know that this personal addon/ directory is recursively scanned by XXE during its startup in order to load
all files ending with "_xxe". (This also means that you are free to organize this subdirectory like you want.)

Copy examplel.dtd to directory addon/examplel/.
<IELEMENT doc (parat+)>

<IELEMENT para (#PCDATA)>
<IATTLIST para align (left]center|right) "left">

Copy examplel.css to directory addon/examplel/
doc,
para {
display: block;
¥

para {

http://www.w3.org/TR/xml-stylesheet/
http://www.w3.org/TR/xml-stylesheet/

Writing a configuration file for XXE

margin: lex O;
}
para[align] {

text-align: concatenate(attr(align));
¥

Create a document template for DTD "-//XMLmind//DTD Examplel//EN" using a text editor. Save it as ad-
don/examplel/examplel._xml.

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE doc PUBLIC "-//XMLmind//DTD Examplel//EN"
“http://www.xmImind.com/public/dtd/examplel.dtd">
<doc>
<para></para>
</doc>

Itis highly recommended to use a public, absolute, URL such as "http://www.xmImind.com/public/dtd/ex-
amplel.dtd" rather than relative URL "examplel.dtd".

Using a text editor, create a XML catalog where public ID "-//XMLmind//DTD Examplel//EN" is associated
to local file examplel.dtd. Save it as addon/examplel/examplel_catalog.xml.

<?xml version="1.0" ?>
<catalog xmIns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
prefer="public">
<public publicld="-//XMLmind//DTD Examplel//EN"
uri="examplel.dtd"/>
</catalog>

This catalog will spare XXE the effort of downloading DTD examplel.dtd from http://www.xml-
mind.com/public/dtd/examplel.dtd

Create a configuration file for XXE using XXE itself. Save it as addon/examplel/examplel . xxe.

<?xml version="1.0" encoding="1S0-8859-1"7>
<configuration name="Examplel™
xmIns="http://www.xmImind.com/xmleditor/schema/configuration"
xmIns:cfg="http://www.xmImind.com/xmleditor/schema/configuration'>
<detect>
<dtdPublicld>-//XMLmind//DTD Examplel//EN</dtdPublicld>
</detect>

<css name="'Style sheet" location=""examplel.css" />

<template name="Template" location="examplel.xml" />
</configuration>

If you create a configuration file with a text editor, do not forget to check its validity before deploying it be-
cause, for performance reasons, XXE does not thoroughly validates its configuration files at start-up time.
The simplest way to do that is to open the configuration file in XXE.

Restart XXE.

Now you can use File|New and select Examplel > Template to create a new document.
| mportant

Do not forget to temporarily disable the Schema cache (using Options|Options, Schema tab, Enable
cache toggle) if you intend to develop your own DTD and test it using XXE.

Make sure that the template document is valid: the red icon must not be displayed at the bottom/left of XXE
window.

Writing a configuration file for XXE

If the template document, examplel.xml, is invalid, please use a text editor and fix it because XXE is not
designed to be comfortable to use with invalid documents.

Short description of addon/examplel/examplel.xxe. See Configuration elements to have more details.

configuration: The configuration file must have a name that ends with " .xxe" and the configuration element
must have a name attribute and must contain a detect element in order to be loaded by XXE.

Configuration files without a name and/or without a detect element are typically included by other configuration
files, see include. To speed up the start up of XXE, it is recommended to use another suffix such as "_incl"
to name these files.

detect: Simplest possible detection condition for a DTD based document: if a document opened by XXE has
a <!DOCTYPE> with public ID equals to -//XMLmind//DTD Examplel//EN, then XXE will automatically use
configuration addon/examplel/examplel.xxe.

css: If a document detected by Examplel configuration has no <?xml-stylesheet?> processing instruction
specifying a CSS style sheet, XXE will automatically use addon/examplel/examplel.css.

template: Entry Examplel > Template is listed in the File|New dialog box. Selecting this entry allows you to
create a new document with the -//xXMLmind//DTD Examplel//EN document type.

2.W3C XML Schema example

The W3C XML Schema example is similar to the DTD example.

1.

2.

Create a subdirectory named example2 in the addon/ subdirectory of XXE user preferences directory:

Copy example2.xsd to directory addon/example2/.

<?xml version="1.0" encoding="1S0-8859-1"7>
<xs:schema elementFormDefault="qualified"
targetNamespace="http://www.xmImind.com/xmleditor/schema/example2"
xmIns:xs="http://www.w3.0rg/2001/XMLSchema""
xmlIns:e2="http://www.xmImind.com/xmleditor/schema/example2">
<xs:element name="'doc''>
<xs:complexType>
<xs:sequence>
<xs:element type="e2:Para" maxOccurs="unbounded" name="para"
minOccurs="1"></xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name=""Para' mixed=""true'>
<xs:attribute default="left" name="align" type="e2:Align''></xs:attribute>
</xs:complexType>

<xs:simpleType name="Align'>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="left'"></xs:enumeration>
<xs:enumeration value="center'></xs:enumeration>
<xs:enumeration value="right''></xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Copy example2.css to directory addon/example2/.

@namespace url(http://www.xmImind.com/xmleditor/schema/example2);

doc,

para {
display: block;

Writing a configuration file for XXE

3
para {

margin: lex O;
}

para[align] {
text-align: concatenate(attr(align));
¥

This style sheet would work fine without default namespace declaration at the top of it but rule matching is
faster when @namespace is used.

Create a document template for XML Schema "http://www.xmImind.com/xmleditor/schema/example2"
using a text editor. Save it as addon/example2/example2.xml.

<?xml version="1.0" encoding=""UTF-8" ?>
<doc xmlns="http://www.xmImind.com/xmleditor/schema/example2"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.xmImind.com/xmleditor/schema/example2
http://www.xmImind.com/public/schema/example2.xsd">
<para></para>
</doc>

It is highly recommended to use a public, absolute, URL such as "http://www.xmImind.com/pub-
lic/schema/example2._xsd" rather than relative URL "example2.xsd".

Using a text editor, create a XML catalog where URL "http://www.xmImind.com/public/schema/ex-
ample2.xsd" is associated to local file example2.xsd. Save it as addon/example2/example2_catalog.xml.

<?xml version="1.0" ?>
<catalog xmlns=""urn:oasis:names:tc:entity:xmlIns:xml:catalog"
prefer="public'">
<uri name="http://www.xmImind.com/public/schema/example2.xsd"
uri=""example2.xsd"/>
</catalog>

This catalog will spare XXE the effort of downloading W3C XML Schema example2 . xsd from http://www . xm-
Imind.com/public/schema/example2.xsd

Create a configuration file for XXE using XXE itself. Save it as addon/example2/example2 . xxe.

<?xml version="1.0" encoding="1S0-8859-1"7>

<configuration name="Example2"
xmIns="http://www.xmImind.com/xmleditor/schema/configuration"
xmIns:cfg="http://www.xmImind.com/xmleditor/schema/configuration'>
<detect>

<rootElementNamespace
>http://www.xmImind.com/xmleditor/schema/example2</rootElementNamespace>

</detect>

<css name="'Style sheet" location=""example2.css" />

<template name="Template" location="example2.xml" />
</configuration>

If you create a configuration file with a text editor, do not forget to check its validity before deploying it be-
cause, for performance reasons, XXE does not thoroughly validates its configuration files at start-up time.
The simplest way to do that is to open the configuration file in XXE.

Restart XXE.
Now you can use File|New and select Example2 > Template to create a new document.

| mportant

Do not forget to temporarily disable the Schema cache (using Options|Options, Schema tab, Enable
cache toggle) if you intend to develop your own schema and test it using XXE.

Writing a configuration file for XXE

Make sure that the template document is valid: the red icon must not be displayed at the bottom/left of XXE
window.

If the template document, example2.xml, is invalid, please use a text editor and fix it because XXE is not
designed to be comfortable to use with invalid documents.

About addon/example2/example2.xxe:

detect: Simplest possible detection condition for a XML Schema based document: if a document opened by
XXE has aroot element in namespace "http://www.xmImind.com/xmleditor/schema/example2" then XXE
will automatically use configuration addon/example2/example2.xxe.

3. RELAX NG example

The RELAX NG example is similar to the other examples.

1.

2.

Create a subdirectory named example3 in the addon/ subdirectory of XXE user preferences directory:

Copy example3. rnclto directory addon/example3/.

default namespace = "http://www.xmImind.com/xmleditor/schema/example3*
namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

start = doc-element

doc-element = element doc {
para-element+

3
para-element = element para {
mixed {
[a:defaultvValue = "left"]
attribute align { "left" | "center" | "right" }?
}
3

Copy example3.css to directory addon/example3/.

@namespace url(http://www.xmImind.com/xmleditor/schema/example3);

doc,
para {

display: block;
3
para {

margin: lex O;
}

para[align] {
text-align: concatenate(attr(align));
¥

This style sheet would work fine without default namespace declaration at the top of it but rule matching is
faster when @namespace is used.

Create a document template for RELAX NG schema "http://www.xmImind.com/xmleditor/schema/ex-
ample3" using a text editor. Save it as addon/example3/example3.xml.

<?xml version="1.0" encoding="UTF-8" ?>

<doc xmlns="http://www.xmImind.com/xmleditor/schema/example3">
<para></para>

</doc>

Example3.rng is also available in XXE_i nst al | _di r /doc/configure/samples/example3/, in case you prefer the XML
syntax to the compact syntax.

Writing a configuration file for XXE

Note that, unlike with DTDs and with W3C XML Schemas, there is no standard way to associate a RELAX
NG schema to an instance®.

5. Create a configuration file for XXE using XXE itself. Save it as addon/example3/example3.xxe.

<?xml version="1.0" encoding=""1S0-8859-1"?>

<configuration name="Example3"
xmIns="http://www.xmImind.com/xmleditor/schema/configuration"
xmIns:cfg="http://www.xmImind.com/xmleditor/schema/configuration'>
<detect>

<rootElementNamespace
>http://www.xmImind.com/xmleditor/schema/example3</rootElementNamespace>

</detect>

<relaxng compactSyntax=""true"™ encoding="1S0-8859-1" location=""example3.rnc"
name=""http://www.xmImind.com/xmleditor/schema/example3"/>

<css location="example3.css" name="Style sheet'/>

<template location=""example3.xml" name="Template"/>
</configuration>

The relaxng configuration element is essential because there is no standard way to associate a RELAX NG
schema to an instance.

6. Restart XXE.

Now you can use File|New and select Example3 > Template to create a new document.

| mportant

Do not forget to temporarily disable the Schema cache (using Options|Options, Schema tab, Enable
cache toggle) if you intend to develop your own schema and test it using XXE.

7. Make sure that the template document is valid: the red icon must not be displayed at the bottom/left of XXE
window.

If the template document, example3.xml, is invalid, please use a text editor and fix it because XXE is not
designed to be comfortable to use with invalid documents.

There is a non standard, proprietary, way to do that: the <?xxe-relaxng-schema location="..."?> processing instruction. However, its use should
be restricted to testing and other quick and dirty experiments.

Chapter 3. Customizing mouse and key
bindings used by XXE

The bindings used as examples in this chapter are found in XXE_i nst al | _di r /doc/configure/samples2/.

1. XML application specific bindings

A configuration file such as docbook . xxe can contain binding elements. A binding element specifies:
» akeystroke or a sequence of keystrokes which triggers a command,
* OR amouse input which triggers a command or displays a custom popup menu.

For example, adding the following binding element to docbook - xxe will allow to convert selected text to emphasis
(with role attribute set to bold) by pressing on function key F5:

<binding>

<keyPressed code="F5" />

<command name="‘docb.convertToBold" />
</binding>

<command name="docb.convertToBold">
<macro>
<sequence>
<command name="‘convert' parameter="[implicitElement] emphasis" />
<command name="‘putAttribute" parameter="role bold" />
</sequence>
</macro>
</command>

It is recommended to add custom bindings into a separate file and to include this file in configurations files bundled
with XXE rather than directly modifying the bundled configuration files.

For example, if you want to use the F5 key for converting text to emphasis in all documents belonging to the
DocBook family (DocBook, Simplified DocBook, Slides), add the elements of the previous example to a file called
/opt/xxe-custom/extrabindings. incl and include this file in XXE_i nst al | _di r /addon/config/docbook/com-
mon.incl.

<include location="Ffile:///opt/xxe-custom/extrabindings.incl" />

Note that XXE does not allow bindings defined in XML application specific configuration files to override its
menu accelerators.

Example 1: you cannot bind Ctrl-Q to command docb. convertToBold because Ctrl-Q is used to quit XXE.

Example 2: you cannot bind Ctrl-I to command docb . convertToBold because, by default, Ctrl-I triggers command
"insert" with parameter "into" (menu item Edit|Insert).

In next chapter, we will learn how to customize an existing configuration as a whole. We will use the DocBook
configuration as an example.

2. Generic bindings

What if you want add bindings which are not XML application specific. Do you really have to include them in all
configuration files?

What if you really hate some of the default bindings of XXE? Do you really have to stop using XXE?

10

Customizing mouse and key bindings
used by XXE

The answer is no to both questions. Simply add your generic bindings to a file called customiize.xxe anywhere
XXE can find it. For example, create this file in the addon/ subdirectory your user preferences directory, that is:

* $HOMVE/ .xxe/ on Unix,

¢ UBystenDrivedDocuments and Settings\%SERNAMVEYA\Application Data\XMLmind\XMLeditor\ On
Windows 2000/XP,

e USystenDriveddwinnt\Profiles\%JSERNAVEYAApplication Data\XMLmind\XMLeditor\ on Windows
NT.

For more information about how XXE finds its configuration files, please read Section 1, “Dynamic discovery of
add-ons”.

If several configuration files called customize . xxe are found, their contents are merged with a higher priority to
customize.xxe files found in the user preferences directory.

File customize .xxe may also be used to specify parameterGroup, imageToolkit, spreadsheetFunctions, property,
which are not XML application specific.

XXE_i nstal | _di r /doc/configure/samples2/customize.xxe adds useful bindings to the default set. Excerpt
of this sample customize. xxe:

<binding>

<keyPressed code="ESCAPE" />

<charTyped char="1" />

<command name=''convertCase' parameter="lower" />
</binding>

<binding>

<keyPressed code="ESCAPE" />

<charTyped char="u" />

<command name="'convertCase' parameter="upper" />
</binding>

<command name="insertCommandOutput'>
<macro>
<seguence>
<command name="‘run' />
<command name="insertString'" parameter="% "' />
</sequence>
</macro>
</command>

<binding>
<keyPressed code="ESCAPE" />
<charTyped char="1" />
<command name="'insertCommandOutput' />
</binding>

11

Chapter 4. Using HTML4 tables or CALS
tables in your own custom schema

If you create a custom schema and need general purpose tables for it, you'll probably choose the well-known
HTML4 or CALS! tables.

Including the definition of table elements in your custom schema will not be described in this chapter. Instead this
chapter will explain:

» how to properly render HTML4 or CALS tables on screen by using a CSS style sheet;

* how to include table editing commands in your custom configuration for XXE.

I mportant

All the CSS style sheets and all the commands described below have been designed to properly work
whatever is the namespace you have chosen for your schema and/or for the table elements.

1. HTMLA4 tables

Procedure4.1. Procedure

1. The corresponding support code is contained in XXE_i nst al | _di r /doc/configure/jars/xhtml_table.jar.
In theory, you need to copy this file to the directory containing your custom configuration.

Now, XXE is bundled with a configuration for XHTML and this configuration includes xhtml _jar. File
xhtml . jar already contains all the code needed to support HTMLA4 tables in XXE. Therefore, unless you
have deleted the standard XHTML configuration for XXE, you don't need to copy xhtml_table_jar to the
directory containing your custom configuration.

2. Add this snippet at the top of your CSS style sheet:

@import url(xxe-config:xhtml/css/xhtml_table.imp);

If you use a namespace (e.g. http://acme.com/ns) for all the elements defined in your schema, including
for table elements, add this snippet instead. This is not strictly needed but this will speed up the rendering of
XML elements on screen:

@namespace '‘http://acme.com/ns';
@import url(xxe-config:xhtml/css/xhtml_table.imp);

3. Add this snippet in your custom configuration for XXE. In the example below, you have chosen to prefix all
the custom commands declared in your configuration using prefix "my.".

<command name="'my.tableColumn">
<class>com.xmImind.xmleditapp.xhtml.table.TableColumn</class>

</command>

<command name="'my.tableRow">
<class>com.xmImind.xmleditapp.xhtml_table.TableRow</class>

</command>

After that, you can reference the above table commands in your custom menu, custom tool bar or custom
bindings. Example:

<menu label="M_yDoc">
<item label="Insert Column _Before"

WMH&Dm&mh&bumeAZDmBmkwm+wwmmmmHTMMaMCNﬁmN%

12

Using HTMLA4 tables or CALS tables
in your own custom schema

icon=""xxe-config:common/icons/ColumnlnsertBeforel6._gif"
command="my . tableColumn® parameter="insertBefore"/>

1.1. HTML4 table commands

1.1.1. tableColumn

Parameter syntax:

insertBefore [td | th]? |

insertAfter [td | th]? |

delete

A td or th element must be implicitly or explicitly selected.

insertBefore [td | th]?
Inserts a column before column containing selected cell.

If option td (or th) is specified, a new homogeneous column containing only td (or th) cells is created. Oth-
erwise the newly created column has cells similar to those of the column containing selected cell.

insertAfter [td | th]?
Inserts a column after column containing selected cell.

delete
Deletes column containing selected cell.

1.1.2. tableRow

Parameter syntax:

insertBefore [td | th]? |
insertAfter [td | th]? |
delete

A td or th element must be implicitly or explicitly selected. If a tr element is explicitly selected, this is equivalent
to having selected its first cell.

insertBefore [td | th]?
Inserts a row before row containing selected cell.

If option td (or th) is specified, a new homogeneous row containing only td (or th) cells is created. Otherwise
the newly created row has cells similar to those of the row containing selected cell.

insertAfter [td | th]?
Inserts a row before row containing selected cell.

delete
Deletes row containing selected cell.

2. HTMLA4 form elements

What applies to HTMLA4 tables, also applies to HTML4 form elements (input, textarea, etc).

Procedure 4.2. Procedure

1. The corresponding support code is contained in XXE_i nst al | _di r /doc/configure/jars/xhtml_form._jar.
In theory, you need to copy this file to the directory containing your custom configuration.

13

Using HTMLA4 tables or CALS tables
in your own custom schema

Now, XXE is bundled with a configuration for XHTML and this configuration includes xhtml _jar. File
xhtml . jar already contains all the code needed to style HTML4 form elements. Therefore, unless you have
deleted the standard XHTML configuration for XXE, you don't need to copy xhtml_form. jar to the directory
containing your custom configuration.

Add this snippet at the top of your CSS style sheet:

@import url(xxe-config:xhtml/css/xhtml_form.imp);

If you use a namespace (e.g. http://acme.com/ns) for all the elements defined in your schema, including
for form elements, add this snippet instead. This is not strictly needed but this will speed up the rendering of
XML elements on screen:

@namespace "http://acme.com/ns";
@import url(xxe-config:xhtml/css/xhtml_form.imp);

3. CALS tables

Procedure 4.3. Procedure

1.

The corresponding support code is contained in XXE_i nst al | _di r /doc/configure/jars/cals_table_jar.
In theory, you need to copy this file to the directory containing your custom configuration.

Now, XXE is bundled with a configuration for DocBook and this configuration includes docbook. jar. File
docbook. jar already contains all the code needed to support CALS tables in XXE. Therefore, unless you
have deleted the standard DocBook configuration for XXE, you don't need to copy cals_table. jar to the
directory containing your custom configuration.

Add this snippet at the top of your CSS style sheet:

@import url(xxe-config:docbook/css/cals_table.imp);

If you use a namespace (e.g. http://acme.com/ns) for all the elements defined in your schema, including
for table elements, add this snippet instead. This is not strictly needed but this will speed up the rendering of
XML elements on screen:

@namespace "http://acme.com/ns";
@import url(xxe-config:docbook/css/cals_table.imp);

Add this snippet in your custom configuration for XXE. In the example below, you have chosen to prefix all
the custom commands declared in your configuration using prefix "my_".

<command name="my.tableColumn®>
<class>com.xmImind.xmleditapp.docbook.table.TableColumn</class>

</command>

<command name="'my.tableRow'>
<class>com.xmImind.xmleditapp.docbook.table.TableRow</class>

</command>

After that, you can reference the above table commands in your custom menu, custom tool bar or custom
bindings. Example:

<menu label="M_yDoc">
<item label="Insert Column _Before"
icon=""xxe-config:common/icons/ColumnlnsertBeforel6.gif"
command=""my.tableColumn' parameter="insertBefore"/>

File cals_table_jar (and also docbook. jar) also contains a document hook which ensures that the cols
attribute of elements tgroup and entrytbl is always set to a correct value before a DocBook document is
validated, saved to disk or converted to another format.

14

Using HTMLA4 tables or CALS tables
in your own custom schema

Using commands tableColumn and tableRow also ensures that the cols attribute is up to date. However it
is strongly recommended to add this document hook to your custom configuration. This is done by adding
this snippet:

<documentHook name="cols_checker>

<class>com.xmImind.xmleditapp.docbook.table.DocumentHookImpl</class>
</documentHook>

3.1. CALS table commands

3.1.1. tableColumn

Parameter syntax:

insertBefore |
insertAfter |
delete

An entry element must be implicitly or explicitly selected.

insertBefore
Inserts a column before column containing selected cell. The newly created column has cells similar to those
of the column containing selected cell.

insertAfter
Inserts a column after column containing selected cell.

delete
Deletes column containing selected cell.

3.1.2. tableRow

Parameter syntax:

insertBefore |
insertAfter |
delete

An entry element must be implicitly or explicitly selected. If a row element is explicitly selected, this is equivalent
to having selected its first cell.

insertBefore
Inserts a row before row containing selected cell. The newly created row has cells similar to those of the row
containing selected cell.

insertAfter
Inserts a row before row containing selected cell.

delete
Deletes row containing selected cell.

15

Chapter 5. Customizing an existing
configuration

A sample customization of the stock DocBook configuration is available in XXE_i nst al | _di r /doc/conFig-
ure/samples2/mydocbook. xxe, mydocbook. css, mydocbook icons/, mydocbook.xsl.

If you want to experiment with this customization, create directory mydocbook/ in XXE_user _pref er -
ences_di r /addon/ and copy mydocbook.xxe, mydocbook.css, mydocbook_icons/, mydocbook.xsl to
XXE_user _pr ef er ences_di r /addon/mydocbook/ (XXE_user _pref erences_dir iS $HOME/ .xxe/ on Unix
and ¥®yst enDri ved\Documents and Settings\%SERNAVEXAApplication Data\XMLmind\XMLeditor\
on Windows).

Note

The name of subdirectory mydocbook/ is hot important. Creating a subdirectory is even not mandatory.
It just makes it easier to delete the custom configuration.

Then restart XXE.

If you want to deploy this customization for all the XXE users on your machine, create directory mydocbook/
in XXE_i nst al | _di r /addon/ and copy mydocbook . xxe, mydocbook . css, mydocbook_icons/, mydocbook . xs|
to XXE_i nst al | _di r /addon/mydocbook/.

Then rename mydocbook . xxe t0 Omydocbook . xxe.

Note

When XXE finds several configurations having the same name and when these configurations have
the same priority, XXE loads the configuration having a file basename which lexicographically precedes
the others. More information about this in next chapter.

* Stock docbook. xxe is named "DocBook" and custom mydocbook . xxe is also named "DocBook".

e Stock docbook.xxe and custom mydocbook.xxe being located in a subdirectory of XXE_i n-
stal | _di r /addon/ are both system configurations. They have the same priority.

» docbook.xxe precedes mydocbook.xxe but Omydocbook . xxe precedes docbook . xxe.

e Renaming mydocbook.xxe t0 Omydocbook.xxe Wwhen mydocbook.xxe is created in
XXE_user _pr ef er ences_di r Zaddon/mydocbook/ is not needed because user configurations have
priority over system configurations.

Then restart XXE.

1. Structure of a configuration file customizing an exist-
ing configuration

I mportant

If you create a configuration file with a text editor, do not forget to check its validity before deploying it
because, for performance reasons, XXE does not thoroughly validates its configuration files at start-up
time. The simplest way to do that is to open the configuration file in XXE.

Excerpt of the sample customization, mydocbook . xxe, of the stock DocBook configuration:

16

Customizing an existing configuration

<?xml version="1.0" encoding="1S0-8859-1"7>

<configuration name="DocBook"
xmIns="http://www.xmImind.com/xmleditor/schema/configuration”
xmIns:cfg="http://www.xmImind.com/xmleditor/schema/configuration>

<include location="xxe-config:docbook/docbook.xxe"/>

custom zation itens

</configuration>
» The configuration file must have a "'_xxe" extension.

* The configuration element must have a name attribute and the value of this name attribute must be the same
as the value of the name attribute of the overridden configuration.

» The customized configuration must include the overridden configuration using configuration element include.

» If you need to refer to a file found in XXE_i nst al | _di r /addon/config/, it is recommended to use a relative
URI which begins with string "xxe-config:".

Note

The following rule has been added to the XML catalog bundled with XXE, XXE i nstal | _di r /ad-
don/config/catalog.xml:

<rewriteURI uriStartString="xxe-config:" rewritePrefix="_" />

This means that any URI which starts with string "xxe-config:" is understood as being relative to
XXE_install _dir/addon/config/.

2. Customization items

We will describe in this section the customization items found in the mydocbook . xxe sample. Many more custom-
ization items not described here are available too: document templates, element templates, custom menu entries,
etc. See Configuration elements.

2.1. Custom CSS style sheet

The first configuration element css removes CSS style sheet named "Visible inclusions and locations"
from the Style menu.

The second one replaces the default CSS style sheet for DocBook (named "DocBook", see XXE_i nst al | _di r /ad-
don/config/docbook/docbook . xxe) by a customized one

<I-- Discard this CSS -->
<css name="Visible inclusions and locations'/>

<I-- Customize the normal CSS -->
<css name="DocBook'" location="mydocbook.css" />

The customized CSS style sheet imports the normal DocBook CSS style sheet using standard construct @import
(but with special URI starting with "xxe-config:") and customizes the look and feel of DocBook element 1ink.

@import url(xxe-config:docbook/css/docbook.css);

link:after {
content: set-attribute-button(attribute, linkend,
icon, icon(right));
color: rgh(128,128,196);

17

Customizing an existing configuration

2.2. Custom bindings

This customization adds a custom binding for otherwise unbound command insertCharByName. See configuration
element binding. The reference of all built-in commands is found in another document: XMLmind XML Editor -

Commands.

<1-_

Inserts at caret position a character specified using its entity name.
-——>

<binding>
<keyPressed code="ESCAPE" />
<charTyped char="C" />
<command name="insertCharByName" />
</binding>

nmor e macr o- commands and bi ndi ngs

2.3. Custom tool bar

This customization adds three buttons to the stock DocBook tool bar. See configuration element toolBar.

definitions of macro-commands docb. start | nmageVi ewer
and docb. start HTM.Vi ewer

<command name="'docb.editDocument''>
<macro trace=""false'>
<seguence>
<get context="$implicitElement/@url" expression="resolve-uri(.)" />
<command name="XXE.edit" parameter="%_ "' />
</sequence>
</macro>
</command>

<toolBar>
<insert />
<separator />

<button toolTip="View Image in Xv'" icon="mydocbook_icons/xv.gif">
<command name="'docb.startlmageViewer" />

</button>
<button toolTip="View HTML in Web Browser" icon="mydocbook icons/mozilla.gif">

<command name="'docb.startHTMLViewer" />
</button>
<button toolTip="Edit Document" icon="mydocbook_icons/edit.gif">
<command name="'docb.editDocument" />
</button>
</toolBar>

Note the insert element inside the toolBar element which is used to insert all the tool bar buttons specified in
the stock DocBook configuration before the new View Image in Xv button.

2.4. Custom parameters for the XSLT style sheet used to convert
DocBook documents to RTF, PostScript and PDF

Named parameterGroups are used here to customize the RTF, PostScript and PDF files generated using sub menu
Convert of the DocBook menu (see XXE_i nst al | _di r /addon/config/docbook/xsIMenu. incl)

18

../commands/index.html
../commands/index.html

Customizing an existing configuration

Which parameterGroups to use for DocBook is described in another document: XMLmind XML Editor - DocBook
Support.

The reference manual of Norman Walsh's DocBook XSLT style sheets (which is needed to know, for instance,
what means "variablelist.as.blocks") is found in another document: DocBook XSL Stylesheet Documentation.

<I-- In generated PS, PDF and RTF, format variablelists like the CSS
style sheet does. --—>

<parameterGroup name="docb.toPS.transformParameters'>
<parameter name="variablelist.as.blocks">1</parameter>
</parameterGroup>

<parameterGroup name="docb.toRTF.transformParameters'>
<parameterGroup name="‘docb.toPS.transformParameters"/>
</parameterGroup>

<I-- Use UTF-8 encoding for generated multi-page HTML. -->

<parameterGroup name="'docb.toHTML.transformParameters'>

<parameter name="'chunker.output.encoding'>UTF-8</parameter>

<parameter name="'saxon.character.representation'>native;decimal</parameter>
</parameterGroup>

2.4.1. Extensively customizing the conversion process

It is also possible to extensively customize the Convert commands by specifying alternate XSLT style sheets for
them.

Example: defining the following property in any XXE configuration file allows to use customized XSLT style
sheet mydocbook.xs1 instead of the one normally used by the docb. toHTML1 process command:

<property name="docb.toHTML1.transform" url="true'>mydocbook.xsl</property>

The customized XSLT style sheet always imports the stock style sheet and generally redefines a few custom tem-
plates.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"
xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmIns:saxon="http://icl.com/saxon"
extension-element-prefixes="'saxon">

<xsl:import href="xxe-config:docbook/xsl/html/docbook.xsl"/>H

<xsl:output method="html""
encoding=""UTF-8"H
indent="no"
saxon:character-representation="native;decimal"/>
</xsl:stylesheet>

In the above example (mydocbook.xsl found in XXE_i nst al | _di r /doc/configure/samples2/), the goal is to
generate single-page HTML files using the UTF-8 encoding instead of 1SO-8859-1.

Imports the stock XSLT style sheet used to create single-page HTML files. Note the "xxe-config:"-style
URL.
The above example does not redefine templates. It redefines the xsI :output element of the style sheet.

Another example is found in the documentation of the process/transform configuration element. See XMLmind
XML Editor - Commands.

19

../docbook/index.html
../docbook/index.html
../docbook_xsl/doc/index.html
../commands/index.html
../commands/index.html

Customizing an existing configuration

Tip

In our opinion, it is almost impossible to cope with the complexity of customizing Norman Walsh's
DocBook XSLT style sheets without reading this excellent book: DocBook XSL: The Complete Guide -
Second Edition by Bob Stayton. See http://www.sagehill.net/book-description.html.

20

http://www.sagehill.net/book-description.html

Chapter 6. Deploying XXE

1. Dynamic discovery of add-ons

This section describes how XXE discovers and loads add-ons (that is, extensions) of all types:

configuration files,

XML catalogs,

translations of XXE messages (menu labels, button labels, error messages, etc) to languages other than English,
spell-checker dictionaries,

format, XSL-FO processor and image toolkit plug-ins.

Understanding this is important before learning how to deploy XXE.

1.1.The lookup phase during XXE startup

During its startup:

1.

XXE recursively scans the addon/ subdirectory of XXE user preferences directory searching it for files con-
taining add-ons.

XXE user preferences directory is:
* $HOMVE/ .xxe/ on Unix,

e UBystenDrivedDocuments and Settings\%SERNAMEYA\Application Data\XMLmind\XMLeditor\
on Windows 2000/XP,

e UsystenDriveddwinnt\Profiles\%WSERNAVEYAApplication Data\XMLmind\XMLeditor\ onWindows
NT.

Tip
This addon/ subdirectory is recursively scanned by XXE at startup time. Therefore, feel free to or-

ganize it as you want.

If the XXE_ADDON_PATH variable is set to a non empty string, the content of this variable must be a list of dir-
ectory names separated by character ;" (even on Unix). All the directories referenced in this list are recursively
scanned by XXE.

e File names and "file://" URLs are both supported. Windows example:

C> set XXE_ADDON_PATH=C:\xxe-std-210\doc\configure\samples\examplel;\
file:///C:/xxe-std-210/doc/configure/samples/example2

« Ifthis path ends with "'; +", the addon/ subdirectory of XXE installation directory is also scanned at startup
time. Otherwise, the default add-ons (XHTML configuration, DocBook configuration, etc) are ignored.

e Form @absol ute URL is also supported.

Absol ute URL specifies the location of a text file containing a list of (generally relative) URLS to be
scanned by XXE. The URLs in this list are separated by white space.

Example, sample_configs. list:

21

Deploying XXE

examplel
examplel/examplel.css
examplel/examplel.dtd
examplel/examplel.xml
examplel/examplel.xxe
examplel/examplel_catalog.xml
example2
example2/example2.css
example2/example2._xml
example2/example2.xsd
example2/example2.xxe
example2/example2_catalog.xml

Unix example:

$ export XXE_ADDON_PATH="@http://www.foo.com/xxe/sample_configs.list;+"

3. If the XXE_ADDON_PATH is not set or is set to an empty string or ends with ";+", XXE also recursively scans
the addon/ subdirectory of its installation directory searching it for files containing add-ons.

Tip

This addon/ subdirectory is recursively scanned by XXE at startup time. Therefore, feel free to or-
ganize it as you want.

1.2. Files containing the add-ons

Configuration file
XXE configuration files are XML files:

» with a file name ending with "_xxe",

 validated by XML schema with http://www.xmImind.com/xmleditor/schema/configuration as its
target namespace,

» with a root element named configuration,
« this root element having a name attribute,
e containing a detect element.

Several configurations may have the same name. For example, a user may have defined its own configuration
named "DocBook" including bundled configuration also named "DocBook™ but adding element templates and
keyboard shortcuts (see include, elementTemplate, binding). In such case, only one configuration named
"DocBook" is kept by XXE: the configuration with highest priority.

Configurations loaded from the addon/ subdirectory of user preferences directory have priority over config-
urations loaded from the value of environment variable XXE_ADDON_PATH which in turn have priority over
configurations loaded from the addon/ subdirectory of XXE installation directory.

Configurations having the same priority are sorted using their file basenames. Example:
file:///0pt/xxe/Ffoo/dochook.xxe is tested before File:///opt/xxe/bar/sdocbook.xxe when trying
to detect the class of a document because docbook . xxe lexicographically precedes sdocbook . xxe.

XML catalogs
XML catalogs are XML files:

» with a file name ending with "atalog.xml",
« which conform to the OASIS catalog DTD (see http://www.oasis-open.org/committees/entity/)

Example:

22

http://www.oasis-open.org/committees/entity/

Deploying XXE

<?xml version="1.0" ?>
<IDOCTYPE catalog PUBLIC '-//0ASIS//DTD XML Catalogs V1.0//EN"
"http://www.oasis-open.org/committees/entity/release/1.0/catalog.dtd'>

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
prefer="public">

<public publicld="-//W3C//DTD SVG 1.1//EN"
uri="common/dtd/svgll/svgll._dtd"/>

</catalog>

Note that specifying the above <1DOCTYPE> will not cause the XML catalog parser to download XML Catalog
DTD, catalog.dtd, from the Web.

XXE uses XML Catalogs not only to resolve the locations of the DTD and other external entities, but also to
resolve URLs found in the following places:

» Schema locations in xsi :schemalLocation and in xsi :noNamespaceSchemalocation.

* Schema locations in xs:include, xs:redefine, xs: import.

» Document locations passed to the document() XPath function.

» All XXE configuration elements referencing an URL. Example: <include location="..."/>.
» CSS style sheet locations in @import.

e CSSstyle sheet locations in <?xml-stylesheet href=""___"?>,

* XSLT style sheets in the transform child element of a process command.

» Resources in the copyProcessResource child element of a process command.

e XSLT style sheets included or imported by other XSLT style sheets (that is, the XML Catalogs used by
XXE are passed to Saxon, the XSLT engine bundled with XXE).

* RELAX NG schema locations in <?xxe-relaxng-schema location="..."?>.

Translations of XXE messages menu (labels, button labels, error messages, etc) to languages other than English
Translations of XXE messages are contained in Java™ jars:

» with afile name ending with "' _jar",

» named after the two-letter ISO code of the language (e.g. de.jar, it.jar, cs.jar, es_jar, etc). Not
mandatory but highly recommended.

Spell-checker dictionaries
Spell-checker dictionaries are contained in Java™ jars:

» with a file name ending with ""_dar",
» having a basename which is the 1ISO code of a language (e.g. fr, fr-CH, en, en-US, etc).

This naming pattern is highly recommended for dictionaries found in the local file system. This naming
pattern is mandatory for dictionaries centralized on a HTTP or FTP server.

Format plug-ins
Format plug-ins are contained in Java™ jars:

» with afile name ending with "_format.jar",

» implementing service com.xmlImind.xmleditapp.structformat.StructuredFormat.

23

http://saxon.sourceforge.net/

Deploying XXE

The exact structure of a plug-in jar (manifest, service providers, etc) is described in XMLmind XML Editor
- Developer's Guide.

XSL-FO processor plug-ins
XSL-FO processor plug-ins are contained in Java™ jars:

with a file name ending with "_foprocessor_jar",

implementing service com.xmImind.xmleditapp.process.FOProcessor.

Image toolkit plug-ins
Image toolkit plug-ins are contained in Java™ jars:

with a file name ending with "_imagetoolkit.jar",

implementing service com.xmImind.xmledit.imagetoolkit.ImageToolkit.

2. Centralizing add-ons on a HTTP server

1. Install XXE on the server. Example: Zopt/xxe/ on a server called rapido.

Customize the distribution, if needed to. Example:

Create directory Zopt/xxe/addon/custon/. This directory will contain all the custom add-ons you want
to deploy.

Copy (XSL-FO processor plug-in) xfc_foprocessor. jar and xfc. jar t0 Zopt/xxe/addon/custon/.

Recursively copy directory my_configs/ containing my_dtd1.xxe and my_dtd2.xxe and all associated

resources (DTD, CSS, etc) to /opt/xxe/addon/custom/.

« Directory my_configs/ also contains my_catalog.xml, the following XML catalog file:

<?xml version="1.0" ?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
prefer="public'">
<public publicld="-//My Company//DTD DTD1 V1.0//EN"
uri="'dtdl.dtd"/>

<public publicld="-//My Company//DTD DTD2 V1.0//EN"
uri="dtd2.dtd"/>
</catalog>

This file has been copied to /opt/xxe/addon/custom/my_configs/ along with all the other files.

Test your customized distribution by running Zopt/xxe/bin/xxe on the server.

In Zopt/xxe/addon/, run command "find custom > custom.list" to create text file custom. list
/opt/xxe/addon$ find custom > custom.list
/opt/xxe/addon$ cat custom.list

custom

custom/xfc. jar
custom/xfc_foprocessor. jar
custom/my_configs
custom/my_configs/dtdl.dtd
custom/my_configs/dtd2.dtd
custom/my_configs/my_catalog.xml
custom/my_configs/my_cssl.css
custom/my_configs/my_css2.css
custom/my_configs/my_dtdl.xxe

24

Deploying XXE

custom/my_configs/my_dtd2.xxe
custom/my_configs/my_templatel.xml
custom/my_configs/my_template2.xml

5. Publish your customized distribution on your intranet using a HTTP server. Apache example:

a. Add asimilar snippet to /etc/httpd.conf:

<Directory /opt/xxe/>
AllowOverride None
Order Deny,Allow
Deny from All
Allow from my_company.com

Options Indexes Includes
</Directory>
Alias /xxe /opt/xxe/

b. Restart apache:

cd /etc/rc.d
_/apache restart

6. Now, the hardest part: make sure that the PCs of the all future XXE users on your intranet have the following
environment variable always properly set (for example: add it to autoexec.bat).

set XXE_ADDON_PATH="@http://rapido.my_company.com/xxe/addon/custom.list;+"

Notice that you can update or upgrade the distribution on the server side without having to change this envir-
onment variable on the client side.

7. Tell all your XXE users to download a copy of the XXE installer (that is, xxe-std-NNN-setup.exe OF xxe-
pro-NNN-setup . exe) from your intranet and to install it on their PCs.

3. Deploying XXE using Java™ Web Start

This section assumes that the reader knows what is Java™ Web Start.

I mportant

XXE requires <security><all-permissions/></security> in order to run.

3.1. The deploywebstart command-line tool
Usage: deploywebstart ?opt i ons?
Basic options are:

-codebase ur |
Base URL for all relative URLS in xxe. jnlp.

Default: http://machi ne name on whi ch depl oywebstart was run/xxe

-storepass passwor d
Password for keystore.

Default: teststorepass

-keystore ur|
Keystore location.

25

http://java.sun.com/products/javawebstart/

Deploying XXE

Default: XXE_i nst al | _di r /webstart/testkeystore

-keypass passwor d
Password for private key.

Default: testkeypass

-alias al i as
Alias of keystore entry.

Default: login name of person running deploywebstart.

-index
Generate a simple index.html.

Advanced options are:

-selfsigner dnane
Specifies a distinguished name (dname) for t est keyst or e. Ignored unless testkeystore is used. That is,
this option is ignored when a real certificate is used.

The syntax for distinguished names (dname) is:
CN=cNan®,0U=or gUni t ,0=org,L=ci ty,S=st at e,C=count r yCode
where:

cNanme
common name of a person, e.g., 'Susan Jones'.

orgUnit
department or division name, e.g., 'Purchasing'.

org
large organization name, e.g., 'ABCSystems\, Inc.' (notice the "\' used to protect the ',").

city
city name, e.g., 'Palo Alto'.

state
state or province name, e.g., 'California'.

count ryCode
two-letter country code, e.g., 'CH".

Each field must appear in the above order but it is not necessary to specify all fields.
Default: CN=login name of the person running deploywebstart.

Using this option is absolutely not needed to ““self-sign" jars. It just allows to create a better looking self-
signed certificate.

-online
Keep configuration files and associated resources (DTD or schema, CSS, XSLT, icons, etc) on the deployment
server. This forces the XXE user to work online in order to be able to access the deployment server.

Default: allow the XXE user to work offline.

-quiet
Turns verbosity off.

26

Deploying XXE

The deploywebstart command line tool generates deployment files in subdirectory webstart/ of the XXE in-
stallation directory.

For example, if XXE is installed in Zopt/xxe/, /opt/xxe/bin/deploywebstart will recursively scan the install-
ation directory and generates its deployment files in Zopt/xxe/webstart/.

Deploywebstart creates in webstart/:
e xxe_jnlp.
* index.html, if the —-index option has been used.

» A copy of all the _jar files (Java™ code and resources) and the .dar files (spell-checker dictionaries) found
in XXE_i nst al | _di r /addon/ after signing them.

e xxe_addon.jar, a jar file created and signed by deploywebstart containing everything found in the
XXE_i nst al | _di r /addon/ directory (expect - jar files and .dar files), unless the -online option has been
used.

By default, deploywebstart signs the jars with a self-signed certificate issued by the person running this command-
line utility.

Note that because of the default values of these options, if you need to sign the jars with a true certificate, you will
have to specify all the four -storepass, -keystore, -keypass, -al ias deploywebstart options.

3.2. Deploying XXE using Java™ Web Start, a step by step descrip-
tion

1. Install XXE on the server. Example: Zopt/xxe/ on a server called rapido.

2. Install aJava™ 1.4.1+ JDK on rapido (a JRE is not sufficient).

| mportant

Make sure that the $JAVA_HOVE/bin/ directory is referenced in $PATH because deploywebstart
needs to run command line tools such as keytool and jarsigner.

3. Customize the XXE distribution, if needed to. Example:

» Create directory /opt/xxe/addon/custom/. This directory will contain all the extra add-ons you want
to deploy.

e Copy (XSL-FO processor plug-in) xfc_foprocessor. jar and xfc. jar t0 /opt/xxe/addon/custon/.

* Recursively copy directory my_configs/ containing my_dtd1.xxe and my_dtd2.xxe and all associated
resources (DTD, CSS, etc) to Zopt/xxe/addon/custom/.

» Directory my_configs/ also contains my_catalog.xml, the following XML catalog file:

<?xml version="1.0" ?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog"
prefer="public">
<public publicld="-//My Company//DTD DTD1 V1.0//EN"
uri="dtdl.dtd"/>

<public publicld="-//My Company//DTD DTD2 V1.0//EN"
uri="dtd2.dtd"/>
</catalog>

This file has been copied to /opt/xxe/addon/custom/my_configs/ along with all the other files.

e Add supplemental dictionaries to Zopt/xxe/addon/custon/.

27

Deploying XXE

6.

Delete dictionaries which are not needed by your users. Example:

$ rm /opt/xxe/addon/spell/de.dar

$ rm /opt/xxe/addon/spell/fr.dar

$ rm /opt/xxe/addon/spell/es.dar

Delete configurations which are not needed by your users. Example:
$ rm -rf /opt/xxe/addon/config/slides

$ rm -rf /opt/xxe/addon/config/schema

$ rm -rf /opt/xxe/addon/config/configuration

Delete localizations which are not needed by your users. Example:

$ rm -rf /opt/xxe/addon/translate/

Test your customized distribution by running Zopt/xxe/bin/xxe on the server.

Run the deploywebstart command-line tool:

/opt/xxe/bin$./deploywebstart -index

-index is used to generate a simple index.html file in Zopt/xxe/webstart/.

The default codebase http://rapido.my_company.com/xxe should work fine for this example. If this
is not the case, you'll have to use the -codebase option.

Jars are signed using a self-signed certificate issued by the power user who has ran deploywebstart.
Let's call him john (its login name is john).

The first time a user will start XXE, Java™ Web Start will display a dialog box telling him that XMLmind
XML Editor code has been signed by john (a coworker name known by the user) and that it is strongly
not recommended to run such application.

In our opinion, this is not a problem for applications deployed on a intranet. In this happens to be a problem,
first add a true certificate (that is, purchased from VeriSign for example) using the keytool command
line supplied by Sun in its JDK, then use all the four -storepass, -keystore, -keypass, -al ias deploy-
webstart options to specify who is signing the jars.

Publish your customized distribution on your intranet using a HTTP server. Apache example:

a

Add the following MIME type to /etc/httpd/mime.types:

application/x-java-jnlp-Ffile jnlp

Add a similar snippet to /etc/httpd.conf:

<Directory /opt/xxe/>
AllowOverride None
Order Deny,Allow
Deny from All
Allow from my_company.com

Options Indexes Includes
</Directory>
Alias /xxe /opt/xxe/

Restart apache:

cd /etc/rc.d
_./apache restart

28

Deploying XXE

7. Tell all your future XXE users to download and install Java™ Runtime 1.4.1+ on their PCs. This will also

automatically install Java™ Web Start.

You can use this technology to deploy not only XXE, but also any other application written in the Java™

language.

8. Tellall your future XXE users to visit http://rapido.my_company . com/xxe (this will display the generated
index.html) and to launch XXE from there, at least the first time.

3.3. Comparison between deployment using Java Web Start and
just centralizing the add-ons on a HTTP server

Deploying XXE using Java™ Web Start

Centralizing add-onson aHTTP server

Requires Professional Edition.

Works with both Standard and Professional Editions.

XXE code is downloaded and cached on the PC of the
XXE user.

XXE code is installed by the XXE installer on the PC of
the XXE user.

Spell-checker dictionaries are downloaded and cached
on the PC of the XXE user.

Spell-checker dictionaries are installed by the XXE in-
staller on the PC of the XXE user.

Plug-ins are downloaded and cached on the PC of the
XXE user.

Plug-ins stay on the server and therefore are not cached
on the PC of the XXE user.

By default, configuration files and associated resources
(DTD, CSS, icons, etc) are downloaded and cached on
the PC of the XXE user.

(Use the -onl ine option if you prefer to keep configur-
ation files on the deployment server.)

Configuration files and associated resources (DTD, CSS,
icons, etc) stay on the server and therefore are not cached
on the PC of the XXE user.

User can work offline.

User cannot work offline.

Personal add-ons installed on the user preferences direct-
ory of user (that is, ¥®yst enDri ve9d\Documents and
Settings\YSERNAVEY\Application Data\XML-
mind\XMLeditor\addon\ on Windows) are ignored.

Personal add-ons installed on the user preferences direct-
ory of user (that is, %Syst enDri ve%\Documents and
Settings\YSERNAMVEX\Application Data\XML-
mind\XMLeditor\addon\ on Windows) are loaded too.

Upgrading from XXE V2.9 to XXE V2.10 is automated
for the user.

User will have to manually uninstall XXE V2.9 and then
to manually download and install XXE V2.10.

29

Part Il. Reference

Chapter 7. Configuration elements

Configuration elements are directives which are executed by XXE
 during its start-up (help, include, translation, template);

» or when loading a document (detect elements of all configurations are tried in turn in an attempt to recognize
the type of the document);

» or just after loading a document which has been associated to a configuration because the detect element of
this configuration has recognized it (all other elements: binding, css, etc).

1. binding

<binding>
Content: [mousePressed | mouseDragged | mouseReleased |
mouseClicked | mouseClicked2 | mouseClicked3 |
[keyPressed | charTyped 1{1,3} |
appEvent] [command | menu]
</binding>

<mousePressed

button = (1]2]3) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr]|mod)
/>

<mouseDragged

button = (1]12]13) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr|mod)
/>

<mouseReleased

button = (1]2]3) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr]|mod)
/>

<mouseClicked

button = (1]12]13) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr|mod)
/>

<mouseClicked2

button = (1]2]3) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr]|mod)
/>

<mouseClicked3

button = (1]12]13) : 1

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr|mod)
/>

<keyPressed

code = key code

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr]|mod)
/>

Note that mod is the Command key on Mac and the Control key on other platforms.

<charTyped
char = single character
/>
<appEvent
namre = name of application event
/>

31

Configuration elements

<command
name = NMTOKEN
parameter = string
/>

<menu

label = non enpty token
>

Content: [menu | separator | item]+
</menu>

<separato r
/>

<item
| abel = non enpty token
command = NMTOKEN
parameter = string

/>

key code = (0O | 2] 213141516171 238]
9 | A | ACCEPT | ADD | AGAIN |
ALL_CANDIDATES | ALPHANUMERIC | AMPERSAND |
ASTERISK | AT | B | BACK _QUOTE | BACK_SLASH |
BACK_SPACE | BRACELEFT | BRACERIGHT | C |
CANCEL | CAPS_LOCK | CIRCUMFLEX | CLEAR |
CLOSE_BRACKET | CODE_INPUT | COLON | COMMA |
COMPOSE | CONVERT | COPY | CUT | D | DEAD_ABOVEDOT |
DEAD_ABOVERING | DEAD_ACUTE | DEAD_BREVE |
DEAD_CARON | DEAD_CEDILLA | DEAD_CIRCUMFLEX |
DEAD_DIAERESIS | DEAD_DOUBLEACUTE | DEAD_GRAVE |
DEAD_IOTA | DEAD_MACRON | DEAD_OGONEK |
DEAD_SEMIVOICED_SOUND | DEAD_TILDE |
DEAD_VOICED_SOUND | DECIMAL | DELETE |
DIVIDE | DOLLAR | DOWN | E | END | ENTER |
EQUALS | ESCAPE | EURO_SIGN | EXCLAMATION_MARK |
F | F1 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 |
F18 | F19 | F2 | F20 | F21 | F22 | F23 | F24 | F3 | F4 |
F5 | F6 | F7 | F8 | F9 | FINAL | FIND | FULL WIDTH |
G | GREATER | H | HALF_WIDTH | HELP | HIRAGANA |
HOME | 1 | INPUT_METHOD_ON_OFF | INSERT |
INVERTED_EXCLAMATION_MARK | J | JAPANESE_HIRAGANA |
JAPANESE_KATAKANA | JAPANESE_ROMAN | K | KANA |
KANA_LOCK | KANJI | KATAKANA | KP_DOWN | KP_LEFT |
KP_RIGHT | KP_UP | L | LEFT | LEFT_PARENTHESIS |
LESS | M | MINUS | MODECHANGE | MULTIPLY | N |
NONCONVERT | NUMBER_SIGN | NUMPADO | NUMPAD1 |
NUMPAD2 | NUMPAD3 | NUMPAD4 | NUMPADS5 | NUMPAD6 |
NUMPAD7 | NUMPAD8 | NUMPADS | NUM_LOCK | O |
OPEN_BRACKET | P | PAGE_DOWN | PAGE_UP | PASTE |
PAUSE | PERIOD | PLUS | PREVIOUS_CANDIDATE |
PRINTSCREEN | PROPS | Q | QUOTE | QUOTEDBL | R |
RIGHT | RIGHT_PARENTHESIS | ROMAN_CHARACTERS |
S | SCROLL_LOCK | SEMICOLON | SEPARATOR | SLASH |
SPACE | STOP | SUBTRACT | T | TAB | U | UNDERSCORE |
UNDO [UP [VIWIX]Y] D

Bind a key stroke to a command or bind a mouse click to a command or a popup menu or bind an application event
to a command.

Note that a key stroke or an application event cannot be used to display a popup menu.

XXE does not allow to replace any of its default bindings, just to add more bindings, unless these bindings are
specified in a special purpose configuration file called customi ze . xxe. For more information about customize . xxe,
see Generic bindings.

Examples:

32

Configuration elements

<binding>

<keyPressed code='"F4" />

<command name="insert'" parameter="into tt" />
</binding>

<binding>

<keyPressed code="ESCAPE" />

<charTyped char="@" />

<command name="insert'" parameter="into a" />
</binding>

<binding>
<mousePressed button="2" />
<menu label=""XHTML">
<menu label="Table">
<item label="Insert column before" command="xhtml.tableColumn"
parameter=""insertBefore'/>
<item label="Insert column after"™ command="xhtml.tableColumn"
parameter=""insertAfter"/>
<item label="Delete column' command="'xhtml.tableColumn"
parameter="'delete"/>
</menu>
<separator />
<item label="Go to opposite link end"
command=""xhtml .crossReference" parameter="swap" />
<separator />
<item label="Preview'" command="xhtml._.preview" />
</menu>
</binding>

33

Configuration elements

About application events

An application event, like a mouse click or a keystroke, is used to trigger an action. But unlike user inputs,
application events are not generated by the graphics system (i.e. Java™ AWT). Application events are directly
created and dispatched to the document view by XXE.

Application events have been created to be able to use the very useful binding mechanism for events other
than mouse clicks or keystrokes. For example: drag and drop, changes of the editing context, document
events, etc.

Currently XXE generates the following application events:

file-drop
Generated when the user drags and drops a file in the document view.

By default, XXE uses the following binding:

<binding>

<appEvent name="file-drop" />

<command name="''XXE.open"' parameter="%{url}" />
</binding>

Note how the dropped file URL is passed to the XXE.open command.

Mouse click in the left or in the right margin
Generated when the user clicks in the gray margins found at the left and at the right of the document
view. Note that these margins are by default absent (Options dialog box, Window tab, "Add interactive
margins to styled views" toggle).

The name of this application event is composed as follows:
event_name -> margin press_or_click

margin -> "-left-margin® | "-right-margin*
press_or_click -> "-popup-trigger® | click
click -> modifiers? click _count? button

modifiers -> "-altgr"? "-alt"? "-meta"? "-ctrl"? "-shift"?

click_count -> "-double® | "-triple® | "-quadruple”
] "-" NUMBER >= 5

button-> "-clickl® | "-click2® | "-click3"

Examples: right-margin-click2, left-margin-double-clickl, right-margin-popup-trigger,
right-margin-ctrl-shift-clickl.

By default, XXE uses the following bindings (plus same bindings for the right margin):

<binding>

<appEvent name="left-margin-clickl" />

<command name="'selectBlockAtY" parameter="orParent" />
</binding>

<binding>
<appEvent name="left-margin-popup-trigger" />
<command name="editMenu" />

</binding>

34

Configuration elements

2. command

<command

name = NMTOKEN
>

Content: class | menu | macro | process
</command>

<class>
Content: Java cl ass nane
</class>

Register command specified by cl ass, macr o or process with XXE. The newly registered command can be ref-
erenced in binding command or menu, menu item, toolBar item and command macro using name narme.

All commands are registered in the same global registry using name name. Therefore, it is strongly recommended
to use a prefix (not related to XML namespace prefixes) for the name of your commands. Example of commands
written by XMLmind: docb .moveL ist1temUp, doch.moveListltemDown, wxs . crossReference, wxs . tableColumn,
wxs . tableRow. (We always use short _| ower _case_pr ef i x.canel CaseComandNarre.)

Example:

<command name="'xhtml _preview'>
<class>com.xmImind.xmleditapp.xhtml.Preview</class>
</command>

In the above example, custom command com.xmImind .xmleditapp.xhtml .Preview written in Java is registered
by XXE under the name xhtml .preview.

Child elements of command:

class
Register command implemented in the Java™ language by class cl ass (implements interface com.xml-
mind.xmledit.gadget.Command -- See XMLmind XML Editor - Developer's Guide).

menu
Define a popup menu of commands. This special type of command, typically invoked from contextual macro-
commands, is intended to be used to specify contextual popup menus, redefining or extending the standard
right-click popup menu. See XMLmind XML Editor - Commands.

macro
Define a macro-command which is, to make it simple, a sequence of native commands, menu commands,
process commands or other macro-commands. See XMLmind XML Editor - Commands.

process
Define a process command, which is an arbitrarily complex transformation of part or all of the document being
edited. See XMLmind XML Editor - Commands.

3. configuration

<configuration
name = non enpty token
>
Content: [include]help]translation|saveOptions]command]|parameterGroup]|
binding|toolBar|menu|template]css|dtd|schema]relaxng|detect]
elementTemplate |newElementContent]property]documentHook]
documentResources| imageToolkit]|spreadsheetFunctions]
preserveSpace |windowLayout]*
</configuration>

This root element of a XXE configuration is just a container for all the other configuration elements. See Writing
a configuration file for XXE.

35

../dev/index.html
../commands/index.html
../commands/index.html
../commands/index.html

Configuration elements

Example:

<configuration name="Examplel"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns=""http://www.xmImind.com/xmleditor/schema/configuration"
xmIns:cfg=""http://www.xmImind.com/xmleditor/schema/configuration'>
<detect>

<dtdPublicld>-//XMLmind//DTD Examplel//EN</dtdPublicld>

</detect>
<css name="Style sheet" location="examplel.css" />

<template name=""Template' location="examplel.xml" />

</configuration>

The structure of the configuration element is loose: you can add any number of any of its child elements in any
order.

This loose structure is very convenient when you need to create a new configuration which just adds or replaces
a few elements to an existing configuration.

Example: The following configuration called DocBook overrides bundled configuration also called DocBook.
<configuration name="DocBook"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns="http://www.xmImind.com/xmleditor/schema/configuration’
xmlns:cfg=""http://www.xmImind.com/xmleditor/schema/configuration'>
<include location="file:/D:/xxe/addon/config/docbook/docbook.xxe" />

<css name="DocBook'" location="MyDocBook.css" />
<css name="Big Fonts" location="MyDocBook BigFonts.css" />

<template name="'Chapter (part of a master document)" />
<template name='"Section (part of a master document)' />

<binding>
<keyPressed code="L" modifiers="mod shift" />
<command name="insert" parameter="into literal" />
</binding>
</configuration>

The configuration in previous example can be described as follows:

e It includes bundled configuration from File:/D:/xxe/addon/config/docbook/docbook.xxe to reuse its
detect, elementTemplate, toolBar, etc, elements.

» It replaces bundled style sheet named DocBook by another one contained in MyDocBook. css.
It adds another style sheet called Big Fonts.

e It discards document templates named "Chapter (part of a master document)" and "Section (part
of a master document)" (template with no location attribute).

 Its binds key stroke Shift-Ctrl-L command "insert into literal". (mod is the Command key on Mac and
the Control key on other platforms).

4. css

<css
name = non enpty token
location = anyURI

36

Configuration elements

alternate = boolean : false
/>

Add CSS style sheet named nane, contained in file I ocat i on, to the Style menu.

Any style sheet with alternate="false" is used preferably to a style sheet with alternate=""true" to render a
newly opened document.

Note that if a document contains <?xml-stylesheet type="text/css"?> processing instructions, by default
(there is an XXE option to specify this) the style sheets specified this way are used and the style sheets specified
in the configuration file are ignored.

Specifying a css element without a location may be used to remove css element with the same name from the
configuration.

Example:
<css name="XHTML"™ location="'css/xhtml-form.css" />

<css name="XHTML (form elements not styled)"
location="css/xhtml .css" alternate=""true" />

5.dtd

<dtd

system d = anyURI

publicld = non enpty token
/>

Use the DTD specified by this element to constrain the document.

Note that

» if adocument contains a document type declaration (<IDOCTYPE>) which defines elements,

» orifthe root element of a document has xsi : schemalLocation/xsi :noNamespaceSchemalLocation attributes
» of if a document contains a <?xxe-relaxng-schema location="..."?> processing instruction,

the grammar specified this way is used and the DTD specified in the configuration file is ignored.

Example:

<dtd publicld="-//W3C//DTD XHTML 1.0 Strict//EN"
systemld=""dtd/xhtmll-strict.dtd"” />

It possible to use both a schema or relaxng configuration element and a dtd configuration element but in this case,
the dtd configuration element cannot be used to specify a content model. It may be used to specify a set of character
entities.

6. detect

<detect>
Cont ent: and]dtdPublicld]dtdSystemld]fileNameExtension|mimeType]|
not|]or|rootElementLocalName | rootElementNamespace|schemaType
</detect>

<and>
Content: [and|dtdPublicld]dtdSystemld]fileNameExtension|mimeTypel]
not]or|rootElementLocalName|rootElementNamespace|schemaType]+
</and>

<dtdPublicld
substring = boolean : false
>

37

Configuration elements

Content: non enpty token
</dtdPublicld>

<dtdSystemld>
Cont ent: anyURI
</dtdSystemld>

<fileNameExtension>
Content: file nane extension
</fileNameExtension>

<mimeType>
Content: non enpty token
</mimeType>

<not>
Cont ent: and]dtdPublicld]dtdSystemld]fileNameExtension|mimeType]|
not]or|rootElementLocalName | rootElementNamespace|schemaType
</not>

<or>
Content: [and|dtdPublicld]dtdSystemld]fileNameExtension|mimeTypel]
not]or|rootElementLocalName | rootElementNamespace|schemaType]+
</or>

<rootElementLocalName>
Cont ent: Name
</rootElementLocalName>

<rootElementNamespace>
Cont ent: anyURI
</rootElementNamespace>

<schemaType>
Content: "dtd" | "schema® | "relaxng”
</schemaType>

Register with XXE a condition which can be used to detect the type of a document.

During its start-up, XXE loads all the configuration files it can find, because it needs to keep a list of all detect
elements.

The order of a detect element in this list depend on the location of its configuration file: configurations loaded
from the config subdirectory of user preferences directory precede configurations loaded from the value of envir-
onment variable XXE_ADDON_PATH which in turn precede configurations loaded from the addon subdirectory of
XXE distribution directory.

When a document is opened, XXE tries each detect element in turn. If the condition expressed in the detect
element evaluates to true, the detection phase stops and the configuration containing the detect element is associated
to the newly opened document.

Child elements of detect:

and
Evaluates to true if all its children evaluate to true.

dtdPublicld
Evaluates to true if the document has a document type declaration (<*DOCTYPE>) with a public 1D equals to
the content of this element.

If substring="true", evaluates to true if public ID contains the specified string.

dtdSystemld
Evaluates to true if the document has a document type declaration (<¥DOCTYPE>) with a system ID equals to
the content of this element.

38

Configuration elements

fileNameExtension
Evaluates to true if the file containing the document has a name which ends with '." followed by the content
of this element.

mimeType
Evaluates to true if the file containing the document has a MIME type equals to the content of this element.

not
Evaluates to true if its child evaluates to false.

or
Evaluates to true if any of its children evaluates to true.

rootElementLocalName
Evaluates to true if the document has a root element with a local name (hame without the namespace part)
equals to the content of this element.

rootElementNamespace
Evaluates to true if the document has a root element with a name which belongs to the namespace equals to
the content of this element.

Use "<rootElementNamespace xsi:nil="true" />" to specify that the name of root element has no
namespace.

schemaType
Evaluates to true

 if the document is explicitly constrained by a DTD (that is, has a <!DOCTYPE>) and the content of this
element is dtd,

e ORifhedocumentis explicitly constrained by an W3C XML Schema (that is, has a xsi : schemalLocation
or a xsi :noNamespaceSchemalLocation attribute on its root element) and the content of this element is
schema.

* OR if he document is explicitly constrained by RELAX NG schema (that is, contains a <?xxe-relaxng-
schema location="..."?> processing instruction) and the content of this element is relaxng.

Use "<schemaType xsi:nil="true" />" to specify that document is not explicitly constrained by a DTD,
aW3C XML Schema or a RELAX NG schema.

Examples:

39

Configuration elements

Example 7.1. DocBook DTD

<detect>
<and>
<or>
<rootElementLocalName>book</rootElementLocalName>
<rootElementLocalName>article</rootElementLocalName>
<rootElementLocalName>chapter</rootElementLocalName>
<rootElementLocalName>section</rootElementLocalName>
<rootElementLocalName>sectl</rootElementLocalName>
<rootElementLocalName>sect2</rootElementlLocalName>
<rootElementLocalName>sect3</rootElementLocalName>
<dtdPublicld substring="true">DTD DocBook XML</dtdPublicld>
</or>
<rootElementNamespace xsi:nil="true" />
<not>
<dtdPublicld substring=""true">Simplified</dtdPublicld>
</not>
</and>
</detect>

The detect element in previous example can be described as follows: opened document is a DocBook document
if

» The local name of the root element is one of book, article, chapter, section, sectl, Sect2, sect3.
OR the public ID of its DTD contains string "DTD DocBook XML".
* AND the name of its root element does not belong to any namespace.

e AND the public ID of its DTD does not contain string "Simplified".

Example7.2. XHTML DTD

<detect>
<and>
<rootElementNamespace xsi:nil="true" />
<0or>
<dtdPublicld>-//W3C//DTD XHTML 1.0 Strict//EN</dtdPublicld>
<dtdPublicld>-//W3C//DTD XHTML 1.0 Transitional//EN</dtdPublicld>
<and>
<schemaType xsi:nil="true" />
<or>
<rootElementLocalName>body</rootElementLocalName>
<rootElementLocalName>div</rootElementLocalName>
<rootElementLocalName>html</rootElementLocalName>
</or>
</and>
</or>
</and>
</detect>

40

Configuration elements

Example 7.3. DocBook RELAX NG

A document conforming to the DocBook DTD is hot namespace-aware. A document conforming to the DocBook
RELAX NG schema is namespace-aware, but unfortunately this DocBook RELAX NG schema does not use a
namespace for DocBook elements. Therefore opened document must have a <?xxe-relaxng-schema location="..."?>
processing instruction to make a difference with the DocBook DTD case.

<detect>
<and>
<schemaType>relaxng</schemaType>
<rootElementNamespace xsi:nil="true" />
<or>
<rootElementLocalName>book</rootElementLocalName>
<rootElementLocalName>article</rootElementLocalName>
<rootElementLocalName>chapter</rootElementLocalName>
<rootElementLocalName>section</rootElementLocalName>
<rootElementLocalName>sectl</rootElementLocalName>
<rootElementLocalName>sect2</rootElementLocalName>
<rootElementLocalName>sect3</rootElementLocalName>
</or>
</and>
</detect>

Example7.4. XHTML RELAX NG

A document conforming to the XHTML DTD is not namespace-aware. A document conforming to the XHTML
RELAX NG schema is namespace-aware. The rule below uses this specificity to make a difference with the
XHTML DTD case.

<detect>
<rootElementNamespace>http://www.w3.0rg/1999/xhtml</rootElementNamespace>
</detect>

41

Configuration elements

The xxe-relaxng-schema processing instruction

This processing instruction is a non standard, proprietary, way to associate a document to a RELAX NG
schema. Its use should be restricted to testing and other quick and dirty experiments.

DocBook RELAX NG example:

<?xml version="1.0" encoding="UTF-8" ?>
<?xxe-relaxng-schema name=""-//0ASIS//RELAX NG DocBook V4.3//EN"
location="http://www.docbook.org/rng/4.3/docbook.rng" ?>
<article>
<title></title>
<section>
<title></title>
<para></para>
</section>
</article>

Like the standard <?xml-stylesheet?> standard processing instruction, the xxe-relaxng-schema processing
instruction (which is understood only by XMLmind XML Editor) contains a number of pseudo-attributes:

location
Required. Specifies the URL of the RELAX NG schema.

The location pseudo-attribute is XML-catalog-aware.

name
A unique name for the RELAX NG schema (similar to the public ID of a DTD). Without such name,
a RELAX NG schema cannot be cached.

When possible, the *“target namespace" of the RELAX NG schema is a sensible choice for this attribute.

compactSyntax
Specifies that the RELAX NG schema is written using the compact syntax. Without this attribute, if
location has a "rnc" extension, the schema is assumed to use the compact syntax, otherwise it is as-
sumed to use the XML syntax.

encoding
Specifies the character encoding used for a RELAX NG schema written using the compact syntax. Ig-
nored if the XML syntax is used. Without this attribute, the schema is assumed to use the native encoding
of the platform.

7. documentHook

<documentHook
name = non enpty token
>

Content: [class]?

</documentHook>
<class>

Content: Java cl ass nane
</class>

Reqgister documentHook specified by cl ass with XXE.

A documentHook is some code notified by XXE each time a document is created, opened, checked for validity,
saved to disk and closed.

42

Configuration elements

This is a very general mechanism which has been created to perform semantic validation beyond what can be done
using a DTD or XML-Schema alone but which can also be used to perform many other tasks. See XMLmind XML
Editor - Developer's Guide.

Child elements of documentHook:

class
Register documentHook implemented in the Java™ language by class cI ass (implements interface com_xml -
mind.xmleditapp.dochook.DocumentHook -- See XMLmind XML Editor - Developer's Guide).

Attributes of documentHook:

name
This name is useful to remove or replace a previously registered documentHook. Anonymous documentHooks
cannot be removed or replaced.

When a documentHook element is just used to remove or replace a registered documentHook, a name attribute
must be specified and there must be no class child element.

Example: In this example, a Java™ class named com.xmImind.xmleditapp.docbook.DocumentHooklImpl is
contained in docbook. jar (among other DocBook commands and extensions).

<documentHook>
<class>com.xmImind.xmleditapp.docbook.DocumentHookImpl</class>
</documentHook>

A documentHook is always specific to a document type.

For example, the DocBook documentHook is used to fix the cols attribute of tgroups and entrytbls (if needed
to) just before a DocBook document is saved to disk.

These documentHooks are specified in the XXE configuration file associated to the document type. For example,
the DocBook documentHook is specified in docbook . xxe.

Several documentHooks can be associated to the same document type. In such case, they are notified in the order
of their registration.

8. documentResources

<documentResources>
Content: [resource|selector]+
</documentResources>

<resource>

path = Absol ute XPath (subset)

action = (auto]reference]copy) : auto
/>

<selector
action = (auto]reference]copy) : auto
>

<class>Content: Java cl ass nane</class>
</selector>

Specifies which resources are logically part of the document being edited. Generally these resources are external
image files.

Attributes of child element resource:

path
XPath expression used to find the URIs of the resources within the document content. These URIs are generally
attribute values but could also be element values.

43

Configuration elements

action
Suggested action for the resources matched by the above XPath. This suggested action is displayed by the
Resources dialog box of XXE. See XMLmind XML Editor - Online help.

Auto means: suggest simplest action, copy or reference, for each resource.

In complex cases, specifying document resources using simple XPath expressions (see XPath subset below) is not
sufficient. In such case, use selector child elements instead of resources. The class element contains the name
of a Java™ class which implements com.xmImind.xmledit.doc.XNodeSelector.

XHTML example:

<cfg:resource path="//img/@src" />
<cfg:resource path="//object/@data" />
</cfg:documentResources>

DocBook example:

<cfg:documentResources xmlns=""">
<cfg:resource path="//@fileref" />
</cfg:documentResources>

XPath 1.0 subset supported by configuration elements

The XPath 1.0 subset supported by configuration elements is the one defined in “XML Schema Part 1:
Structures, ldentity-constraint Definitions", except that absolute XPaths (/foo/bar, //bar, etc) are also supported.

XPath = Path ("|" Path)*

Path = /7" //7)? (Step (°/°|°//7))* (Step | "@" NameTest)
Step = "_." | NameTest

NameTest = QName | "*" | NCName ":® *"*-

Both abbreviated syntax and non-abbreviated syntax are supported.

9. elementTemplate

<elementTemplate

name = NMTOKEN

parent = XPath (subset)

selectable = (false|true]override) : true
>

Content: [any elenent]?
</elementTemplate>
Register with XXE the element template specified in this element.

An element template can include another element template. This is specified by <included _element_name cfg:tem-
plate="included_template_name"/> inside the body of the template. See DocBook example below.

Note that the validity of the element contained in the elementTemplate is not checked by XXE when the config-
uration file is parsed.

Specifying a elementTemplate containing no element may be used to remove all elementTemplates with the
same name from the configuration.

name
““Title" of the element template.

Different element templates may have the same name provided that they contain different elements.

parent
With grammars such as XML Schema, different element types can have save the same element name.

44

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions
http://www.w3.org/TR/xmlschema-1/#cIdentity-constraint_Definitions

Configuration elements

Examples:
1. Element title with enumerated values Doctor and Professor can be inserted inside element author.

2. Element title containing plain text, strong or emphasis children can be used as the title of a figure
or a table.

In such situation, the XPath attribute parent must be used to specify to XXE in which context (that is, for
which parent element) the element template can be used.

Examples:
1. Specify parent=""author"
2. Specify parent="Ffigure|table".

selectable
Value true specifies that this element template is to be listed using title el enent _nane(el ement _t em
pl at e_nane) in the dialog box displayed by the Edit|Replace, Edit|Insert Before, Edit|Insert, Edit|Insert After
commands.

Value false or override prevents XXE to list the element template in the dialog box displayed by Edit
commands.

Value false is useful for an element template which is just referenced in a macro-command or in another
template and which is not for general use.

Value override specifies that this element template is to be used everywhere the automatically generated
element would otherwise have been used. See DocBook example below.

Example 7.5. DocBook example

By default, XXE creates a listitem containing a para. The following template forces XXE to create a listitem
containing a simpara.

<cfg:elementTemplate xmlns=""" name="simpara' selectable="override'>
<listitem>
<simpara></simpara>
</listitem>
</cfg:elementTemplate>

The 1istitem specified above will also be automatically used inside newly created itemizedlist, orderedlist
and variablelist.

By default, XXE creates an itemizedlist containing a single listitem. The following template forces XXE to
create an itemizedlist with two listitems.

Note that this template includes the listitem template specified above by using attribute cfg:template.

<cfg:elementTemplate xmlns=""" name="simpara' selectable="override'>
<itemizedlist>
<listitem cfg:template="simpara" />
<listitem cfg:template="simpara" />
</itemizedlist>
</cfg:elementTemplate>

10. help

<help
| ocati on = anyURI
/>

45

Configuration elements

Add specified JavaHelp jar (Java™ Archive) to XXE online help. This JavaHelp jar must contain file
/help/jhelpset.hs describing its help set.

Example:

<help location=""docbook help.jar" />

Such JavaHelp jars can be localized. If, for the previous example, the language of current locale if fr (variant such
as CA in fr_cA is ignored by XXE), XXE will try to load docbook_help_fr_jar and if this fails, it will attempt
to load docbook_help. jar.

11. imageToolkit

<imageToolkit
name = non enpty token
>

Content: [description]? [converter]+
</imageToolkit>

<description>
Content: string
</description>

<converter>
Content: input output [shell]+
</converter>

<input
extensions = non enpty list of file name extensions
magicStrings = non enpty list of strings
magicNumbers = non enpty |ist of hexBinaries
rootNames = non enpty list of Nanes
rootQNames = non enpty |ist of QNanes

/>

<output
extensions = non enpty list of file name extensions
/>

<shell

command = Shel |l command

platform = (Unix | Windows | Mac | GenericUnix)
/>

The imageToolkit configuration element allows to turn any command line tool generating GIF, JPEG or PNG
images (example: ImageMagick's convert) to a fully functional image toolkit plug-in for XXE. Without this
mechanism, image toolkit plug-ins such as the Batik plug-in or the Jimi plug-in need to be written in the Java™
programming language.

XXE_i nstal | _di r /doc/configure/samples2/imagetoolkits.incl contains 3 useful imageToolkits from
which the examples used here are taken.

An imageToolkit has a required name attribute which is used to register the plug-in and an optional description
child element which is displayed in the dialog box opened by menu entry Help|Plug-ins.

An imageToolkit contains one or more converter child elements. A converter mainly contains a command
template (shel I child element) which can be used to convert from one or more input formats (input child element)
to one or more output formats (output child element).

Example:

<imageToolkit name="netpbm">
<description>Converts PBM, PGM, PPM images to PNG.</description>

<converter>

46

http://www.imagemagick.org/
http://www.xmlmind.com/xmleditor/plugins.shtml
http://xml.apache.org/batik/
http://java.sun.com/products/jimi/

Configuration elements

<input extensions="pnm pbm pgm ppm' magicStrings="P4 P5 P6 P1 P2 P3"/>
<output extensions="png'/>

<shell command="pnmtopng %A "%Il' > "%0"" />
</converter>
</imageToolkit>

In the input and output elements, attribute extensions is required and specifies the file name extensions of the
supported image formats. For the output elements, extensions other than png, gif, jpg and jpeg (case-insensitive)
are currently ignored.

The input elements have means other than file name extensions to detect the format of images embedded in the
XML document:

Binary images
Attribute magicNumbers contains a list of numbers in hexadecimal format. These numbers are possible values
for the first bytes found in the image file.

These first bytes are often ASCII characters (even for binary images such as PNG or TIFF), that's why it is
often more convenient to use attribute magicStrings rather than attribute magicNumbers.

Example: magicNumbers="5034 5035" is equivalent to magicStrings="P4 P5".

XML images (typically SVG images)
The format of an XML image embedded in an XML document can be detected by examining the name of its
root element. Attribute rootQNames contains a list of such QNames (qualified names: data type which is part
of the W3C XML Schema standard).

But remember that in XXE, documents which are conforming to a DTD are not namespace-aware. In such
case (for example: DocBook+SVG, that is, "-//0AS1S//DTD DocBook SVG Module V1.0//EN"), QNames
are not usable. That's why the input element also has a rootNames attribute which contains all the possible
XML 1.0 Names for the root element of the XML image.

The following example is not useful because Batik is available as a plug-in written in Java™. However, this
example shows how to declare an imageToolkit which handles XML images.

<imageToolkit name="Batik as an external SVG toolkit'>
<description>Converts SVG to PNG.</description>

<converter>
<input extensions='svg svgz"
magicStrings="&It;?xml"
rootNames="'svg:svg"
rootQNames="'svg:svg" xmlns:svg="http://www.w3.0rg/2000/svg" />
<output extensions="png"/>

<shell
command="java -jar /opt/batik/batik-rasterizer._jar %A %1 -d "%0"" />
</converter>
</imageToolkit>

A converter element contains one or more shell elements. Each shell element contains a command template
usable on a given platform. That is, a single shell command is executed when the imageToolkit is used to convert
between image formats.

After substituting the variables contained in the template (see below), the command is executed the using the native
shell of the machine running XXE: cmd.exe on Windows and /bin/sh on Unix (Mac OS X is considered to be a
Unix platform).

If the platform attribute is not specified, the shell command is executed whatever is the platform running XXE.

If the platform attribute is specified, the shell command is executed only if the platform running XXE matches
the value of this attribute:

47

http://xml.apache.org/batik/

Configuration elements

Windows
Any version of Windows.

Mac
Mac OS X.

GenericUnix
A Unix which is not Mac OS X (Linux, Solaris, etc).

Unix
GenericUnix or Mac.

The command template must contain at least the %1 and %0 variables but may also contain the following variables:

Variable Description

%l Input image file to be converted by the imageToolkit.
Warning

The file names contained in %1 and %0 often contain whitespaces. Do not
forget to properly quote these variables in the command template.

%0 Output image file.

%A Extra command line arguments taken from the convertimage/parameter elements
of a process command (see XMLmind XML Editor - Commands). See example
below.

%S %S is the native path component separator of the platform. Example: ** on Windows.

%C, %c %C is the name of the directory containing the XXE configuration file from which the

imageToolkit element has been loaded. Example: C:\Documents and Set-
tings\john\Application Data\XMLmind\XMLeditor\addon

%c is the URL of the above directory. Example: file:///C:/Docu-
ments%20and%20Settings/john/Application%20 Data/XMLmind/XMLeditor/ad-
don.

Note that this URL does not end with a '/".

Example:

<imageToolkit name="Ghostscript'>
<description>Converts EPS and PDF graphics to PNG.
Important: requires Ghostscript 8+.</description>

<converter>
<input extensions="eps epsf ps pdf'" magicStrings="%!PS %PDF"/>
<output extensions="png'/>

<shell command="gs -q -dBATCH -dNOPAUSE -sDEVICE=pngl6m
-r96 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dEPSCrop
%A "-sOutputFile=%0" "%I""
platform="Unix"/>

<shell command="gswin32c -q -dBATCH -dNOPAUSE -sDEVICE=pngl6m
-r96 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dEPSCrop
%A ""-sOutputFile=%0" "%I1""
platform="Windows"/>
</converter>
</imageToolkit>

About theva variable. Let's suppose a process command contains the following convertimage element:

48

../commands/index.html

Configuration elements

<convertlmage from="raw/*.eps" to="resources" format="png'>
<parameter name='-r''>120</parameter>
<parameter name="'-dDOINTERPOLATE" />

</convertlmage>

When the above convertlmage is executed, the command template is equivalent to:
gs -q -dBATCH -dNOPAUSE -sDEVICE=pngl6m \

-r96 -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -dEPSCrop \
-r "120" -dDOINTERPOLATE '"'-sOutputFile=%0" "%I1"

12. include
<include

| ocati on = anyURI
/>

Include all elements contained in specified configuration file in current configuration file.
The URI found in the 1ocation attribute may be resolved using XML catalogs.

Example 1:

<include location="toolBar.incl" />

If the file containing the above snippet is /home/john/ .xxe/addon/mydocbook.xxe, the included file is then
/home/john/ .xxe/addon/toolBar.incl.

Example 2:

<include location="xxe-config:docbook/toolBar.incl"/>

If XXE has been installed in Zopt/xxe/, the included file is Zopt/xxe/addon/config/docbook/toolBar. incl
because the XML catalog bundled with XXE contains the following rule:

<rewriteURIl uriStartString="xxe-config:" rewritePrefix="_" />

13. menu

<menu

| abel = non enpty token

name = NMTOKEN
>

Content: [menu | separator | item | insert]+
</menu>

<separator />
<insert />

<item
| abel = non enpty token
icon = anyURI
comrand = NMTOKEN
parameter = string
>
Content: [accelerator]?
</item>

<accelerator

code = key code

modifiers = possibly enpty list of (ctrl|shift]jalt]meta]altGr|mod)
/>

Specifies the label and content of the XML (placeholder) menu.

49

http://www.oasis-open.org/committees/entity/

Configuration elements

Note that the mnemonic of a menu or of a menu item is specified by adding an underscore (*_") before the character
used as a mnemonic. Currently, only a-zA-z0-1 characters can be used as mnemonics. Moreover, Java™ does
not make a difference between an uppercase letter and a lowercase letter.

Example:
<menu label=""_XHTML"'>

<menu label="_Table">
<item label="Insert Column _After"
icon="../icons/ColumninsertAfterl6.gif"
command=""xhtml . tableColumn' parameter=""insertAfter'/>
<item label="_Delete Column"
icon="__/icons/ColumnDeletel6.gif"
command=""xhtml . tableColumn' parameter="delete'/>
</menu>

<separator />

<item label="_Go to Opposite Link End"
command=""xhtml .crossReference" parameter="swap"/>

<separator />
<item label="Pre_view"
icon=""__/icons/Refresh16.gif"
command=""xhtml .preview">
<accelerator code="F5" />
</item>
</menu>

A menu configuration element can extend previously defined menu by using child element insert.

Example:

<include location="../common/common.incl" />
<l

Let"s suppose this menu is defined in common.incl:

<cfg:menu label="Menu'>
<cfg:item label="Insert..." command="insert" parameter="into" />
</cfg:menu>

-—>

<cfg:menu label="Menu2'">
<cfg:item label="Insert Before..." command="insert"
parameter="before[implicitElement]" />
<cfg:insert />
<cfg:item label="Insert After..." command="insert"
parameter="after[implicitElement]" />
</cfg:menu>

13.1. Multiple menus

Specifying a name attribute for the menu element allows to create a GUI having several XML application specific
menus.

Example:

1. In XXE_user _preferences_di r Zaddon/xhtml _xxe, add something like this:

<menu name="menu2" label="My XHTML Menu'>

</menu>

50

Configuration elements

In XXE_user _pref er ences_di r /addon/docbook . xxe, add something like this:

<menu name="menu2" label="My DocBook Menu'>

</menu>
Notice that the same name menu2 is used in all XML application specific configuration files.

In XXE_user _pr ef er ences_di r /addon/custom.xxe_gui (see XMLmind XML Editor - Customizing the
User Interface), add something like this:

<menultems name="'configSpecificMenul tems2'>
<class>com.xmImind.xmleditapp.kit.part.ConfigSpecificMenul tems</class>
<property name="'specificationName" type='"String" value="menu2" />
</menul tems>

<menu name="‘configSpecificMenu2" label="_My Menu'>
<menultems name="configSpecificMenultems2" />
</menu>

<menu name=""fileMenu">
<menu name="'configSpecificMenu2" />
<insert />

</menu>

14. newElementContent

<newElementContent

/>

addRequiredAttributes = boolean : true

emptyAttributes = boolean : false

generatelds = boolean : false

addChildElements = (none|firstChoice|simplestChoice) : simplestChoice

Parametrizes the content of a newly inserted element automatically generated by XXE (has no effect on element
templates):

addRequiredAttributes, emptyAttributes, generatelds

Example:

<IELEMENT anchor EMPTY>
<IATTLIST anchor id ID #REQUIRED>

addRequiredAttributes="false" creates <anchor/> (emptyAttributes and generatelds are ignored in
such case) .

addRequiredAttributes="true", emptyAttributes="false", generatelds="false" creates <anchor
1d=""?2?"/>.

addRequiredAttributes=""true", emptyAttributes=""true", generatelds="false" creates <anchor
id=""/>.

addRequiredAttributes="true", generatelds=""true", creates <anchor id="__¥34a62b09.b"/> (whatever
is the value of emptyAttributes).

addChildElements

Example:

<IELEMENT item ((title,definition,body)|description)>

addChi IdElements="none" creates <item></item> (which is invalid).

51

../gui/index.html
../gui/index.html

Configuration elements

addChi ldElements="firstChoice" creates <item><title></title><definition></defini-
tion><body></body></item>. This option is useful for DTD or XML Schema authors who need to precisely
control how XXE automatically generates newly inserted elements.

addChi IdElements="simplestChoice" creates <item><description></description></item>.

Example:

<newElementContent generatelds="true" addChildElements="firstChoice" />

15. property

<property
name = non enpty token
url = boolean
xml:space = preserve
>t ext </property>

Define system property called name. The value of this property is specified by text.

If the url attribute is specified and its value is true, text must be a relative or absolute URL (properly escaped
like all URLS). In such case, the value of system property is the fully resolved URL.

This element is mainly intended to be used to configure some custom commands.

Examples:
<property name="color'>red</property>

<property name="icon.3" url="true">resources/icon.gif</property>

16. parameterGroup

<parameterGroup
name = non enpty token
>

Content: [parameter | parameterGroup]*
</parameterGroup>

<parameter
name = Non enpty token
>

Content: Paraneter val ue
</parameter>

Define a named group of XSLT style sheet parameters for use inside element transform of a process command.

Parameter groups make it easier to customize the XSLT style sheet used to convert a document to other formats
such as HTML or PDF.

For example, instead of redefining the whole process command docb. toPS, suffice to redefine in ~/.xxe/ad-
don/customize.xxe (¥BystenDrivedd\Documents and Settings\YUSERNAVEYAApplication Data\XML-
mind\XMLeditor\addon\customize.xxe on Windows) its placeholder parameterGroup nhamed
"docb.toPS. transformParameters".

Examples:

<parameterGroup name="docb.toPS.transformParameters"'>
<parameter name="variablelist.as.blocks">1</parameter>
</parameterGroup>

<parameterGroup name="docb.toRTF.transformParameters'>
<parameterGroup name="docb.toPS.transformParameters"/>
</parameterGroup>

52

Configuration elements

17. preserveSpace

<preserveSpace
elements = |ist of XPath (subset)
/>

Specifies which elements are whitespace-preserving.

Using standard attribute xml :space with default value preserve is still the preferred way of specifying this.
However, this is not always possible, for example in the case of DTDs/ W3C XML schemas that you don't control
or in the case of RELAX NG schemas which do not really support the concept of attribute default value.

DocBook example:
<cfg:preserveSpace xmlns="""

elements="address funcsynopsisinfo classsynopsisinfo
literallayout programlisting screen synopsis" />

18. relaxng

<relaxng
| ocati on = anyURI
name = non enpty token
compactSyntax = boolean
encoding = any encodi ng supported by Java™
/>
Use the RELAX NG schema specified by this element to constrain the document.

location
Required. Specifies the URL of the RELAX NG schema.

name
A unique name for the RELAX NG schema (similar to the public ID of a DTD). Without such name, a RELAX
NG schema cannot be cached.

When possible, the ““target namespace" of the RELAX NG schema is a sensible choice for this attribute.

compactSyntax
Specifies that the RELAX NG schema is written using the compact syntax. Without this attribute, if location
has a "rnc" extension, the schema is assumed to use the compact syntax, otherwise it is assumed to use the
XML syntax.

encoding
Specifies the character encoding used for a RELAX NG schema written using the compact syntax. Ignored if
the XML syntax is used. Without this attribute, the schema is assumed to use the native encoding of the platform.

Note that

» if a document contains a document type declaration (<!DOCTYPE>) which defines elements,

» orifthe root element of a document has xsi : schemalLocation/xsi :noNamespaceSchemalLocation attributes
« of if a document contains a <?xxe-relaxng-schema location="..."?> processing instruction,

the grammar specified this way is used and the RELAX NG schema specified in the configuration file is ignored.

XHTML RELAX NG example:

<relaxng name="http://www.w3.0rg/1999/xhtml""
location=""rng/xhtml-strict.rng" />

Compact syntax example:

53

Configuration elements

<relaxng compactSyntax=""true'" encoding=""1S0-8859-1"
location=""example3.rnc"
name="http://www.xmImind.com/xmleditor/schema/example3"/>

It possible to use both a relaxng configuration element and a dtd configuration element but in this case, the dtd
configuration element cannot be used to specify a content model. It may be used to specify a set of character entities.

19. saveOptions

<saveOptions

encoding = (1S0-8859-1]1S0-8859-13]1S0-8859-15]1S0-8859-2]
1S0-8859-3] 1S0-8859-4] 1S0-8859-5] 1S0-8859-7 |
1S0-8859-9]KO18-R|MacRoman JUS-ASCI I JUTF-16 JUTF-8]
Windows-1250|Windows-1251 |Windows-1252 |Windows-1253|
Windows-1257)

indent = none | (int >= 0)

maxLineLength = unbounded | (int > 0)

addOpenLines = boolean

cdataSectionElements = |ist of XPath (subset)
saveCharsAsEntityRefs = boolean
charsSavedAsEntityRefs = |ist of character ranges
favorinteroperability = boolean

/>

Force XXE to use the specified save options for this type of document, unless Options|Options, Save tab, Override
settings specified in config. files checkbox has been checked by the user, in which case, it is the save options spe-
cified in the dialog box which are used.

encoding
Specifies the encoding used for XML files saved by XXE.

indent
If this value is different from none, XML files saved by XXE are indented .

Note that XXE cannot indent XML files not constrained by a grammar.

indentation
Specifies the number of space characters used to indent a child element relatively to its parent element.

maxLineLength
Specifies the maximum line length for elements containing text interspersed with child elements.

This value is only used as a hint: XML files created by XXE may contain lines much longer than the specified
length.

addOpenL.ines
If value is true, an open line is added between the child elements of a parent element (if the content model

of the parent only allows child elements).

cdataSectionElements
List of XPaths specifying elements. These elements are expected to only contain text and to have an

xml :space=""preserve" attribute.

Text contained in elements matching any of the XPaths specified by this attribute is saved as a CDATA section.
Text inside a CDATA section is not escaped which makes it more readable using a text editor. Example:

<script type="text/javascript"><![CDATA[function min(x, y) {
return (X < y)? X : y;
H1></script>

If an element matching any of the XPaths specified by this attribute contains anything other than text (even a
comment), it is saved normally.

54

Configuration elements

Note that, in most configuration elements, XXE only supports the XPath subset needed to implement XML-
Schemas (but not only relative paths, also absolute paths). Moreover, for efficiency reasons, an XPath whose
last step does not test an element name is ignored. For example, "foo//*" is ignored.

saveCharsAsEntityRefs
Specifies whether characters not supported by the encoding are saved as entity references (example: "€")
or as numeric character references (example: "€").

Of course, for a character to be saved as an entity reference, the corresponding entity must have been defined
in the DTD.

charsSavedAsEntityRefs
Specifies which characters, even if they are supported by the encoding, are always saved as entity references.

For example, the Copyright sign is supported by the 1SO-8859-1 encoding but you may prefer to see it saved
as "©". In such case, specify charsSavedAsEntityRefs="169"

Ignored if saveCharsAsEntityRefs is false.

This attribute contains a list of character ranges. A character range is either a single character or an actual
range char 1:char 2

A character may be specified using its Unicode character number, in decimal (example: 233 for e acute), in
hexadecimal (example: 0xE9) or in octal (example: 0351).

Because names are easier to remember than numbers, a character may also be specified using its entity name
as defined in the DocBook 4.2 DTD (example: eacute). Note that is possible whatever is the DTD or Schema
targeted by the configuration file.

Note

There is no need to specify the non-breaking space character (nbsp = 160 = 0xa0 = 0240) as it is always
implicitly added to this list.

favorInteroperability
If value is true, favor interoperability with HTML and SGML.

e Empty elements having a non empty content are saved as "<tag></tag>".

» Empty elements having an empty content are saved as "<tag />" (with a space after the tag).
Examples:
<saveOptions addOpenLines="false" />
<cfg:saveOptions xmlns=""" cdataSectionElements="head/script'/>

<saveOptions saveCharsAsEntityRefs=""true"
charsSavedAsEntityRefs="copy reg 023400:024000"/>

Note that a saveOptions element does not replace the saveOptions element previously found in a configuration
file. When a configuration file contains several saveOptions elements, these saveOptions elements are merged.

Example:

<cfg:saveOptions xmlns="" cdataSectionElements="script pre"
addOpenLines="false"/>

<cfg:saveOptions addOpenLines="true" encoding="1S0-8859-1"/>

is equivalent to:

55

Configuration elements

<cfg:saveOptions xmlns=""" cdataSectionElements="script pre"
addOpenLines="true" encoding=""1S0-8859-1" />

20. schema

<schema>
Content: location | noNamespacelLocation | (location noNamespacelLocation)
</schema>
<location>
Content: list of anyURI pairs
</location>
<noNamespacelLocation>

Content: anyURI
</noNamespacelLocation>

Use the W3C XML Schema specified by this element to constrain the document.

The content of child element location is identical to the one of standard attribute xsi :schemalLocation. The
content of child element noNamespaceLocation is identical to the one of standard attribute xsi :noNamespaceS-
chemalLocation

Note that

» if a document contains a document type declaration (<!DOCTYPE>) which defines elements,

» orifthe root element of a document has xsi : schemalLocation/xsi :noNamespaceSchemalLocation attributes
» of if a document contains a <?xxe-relaxng-schema location="..."?> processing instruction,

the grammar specified this way is used and the W3C XML Schema specified in the configuration file is ignored.

Example:

<schema>
<location>http://www.xmImind.com/xmleditor/schema/configuration
xsd/configuration.xsd</location>
</schema>

It possible to use both a schema configuration element and a dtd configuration element but in this case, the dtd
configuration element cannot be used to specify a content model. It may be used to specify a set of character entities.

21. spreadsheetFunctions

<spreadsheetFunctions
| ocati on = anyURI
/>

Specifies the location of an XML document containing user-defined spreadsheet functions.

This XML document contains the definitions of the functions (as Java™ class names or directly using the formula
language) as well as their documentations (for online use in the Formula Editor).

This XML document must conform to the http://www.xmlImind.com/xmleditor/schema/spreadsheet/func-
tions W3C XML Schema. A complete XXE configuration for writing such documents is found in XXE_i n-
stal | _di r /doc/configure/functions_config/.

Specify spreadsheetFunctions in customize.xxe to add general purpose spreadsheet functions.

Specify spreadsheetFunctions in XML application specific XXE configuration files (example: invoice.xxe)
if you want make your spreadsheet functions visible only when certain types of documents (example: Invoices)
of are opened.

56

Configuration elements

Adding user-defined spreadsheet functions to XXE is extensively described in XMLmind XML Editor - Using
the Integrated Spreadsheet Engine.

22.template

<template
namre = non enpty token
location = anyURI

/>

Add document template named narre, contained in file | ocat i on, to the dialog box displayed by File|New.

Specifying a template element without a location may be used to remove template element with the same name
from the configuration.

Example:

<template name="Div (part of a master document)"
location=""template/div._html" />

23.toolBar

<toolBar

name = NMTOKEN
>

Content: [separator | button | insert]+
</toolBar>

<separator />
<insert />

<button

i con = anyURI

toolTip = non enpty token
>

Content: command | menu
</button>

<command
name = NMTOKEN
parameter = string
/>

<menu>
Content: [item | separator]+
</menu>

<item
| abel = non enpty token
icon = anyURI
command = NMTOKEN
parameter = string

/>

Add buttons specified in this element to the tool bar.

Example:
<toolBar>
<button toolTip="Convert to emphasis"
icon="__./icons2/emphasis_menu.gif'">
<menu>

<item label="emphasis'" command="convert"
parameter="[implicitElement] emphasis" />
<separator />

57

../spreadsheet/index.html
../spreadsheet/index.html

Configuration elements

<item label="literal'" command="convert"
parameter="[implicitElement] literal" />

</menu>
</button>
<button toolTip="Convert to plain text" icon="../icons2/plain.gif'>
<command name="‘convert" parameter="[implicitElement] #text" />
</button>

<separator />

<button toolTip="Add para" icon="../icons2/para.gif'">
<command name="add" parameter="after[implicitElement] para" />
</button>

</toolBar>

A toolBar configuration element can extend previously defined toolBar by using child element insert.

Example, this specification adds a button before the buttons of previously defined tool bar:

<toolBar>

<button toolTip="Insert formula"™ icon="icons/formula.gif">
<command name="insertOrConfigureFormula"/>

</button>

<separator />

<insert />

</toolBar>

23.1. Multiple toolBars

Specifying a name attribute for the toolBar element allows to create a GUI having several XML application spe-
cific tool bars.

Example:

1.

In XXE_user _pr ef er ences_di r Zaddon/xhtml . xxe, add something like this:
<toolBar name="toolBar2">

</toolBar>

In XXE_user _pr ef er ences_di r /addon/docbook . xxe, add something like this:

<toolBar name="toolBar2">

</£66IBar>

Notice that the same name toolBar2 is used in all XML application specific configuration files.

In XXE_user _pref erences_di r /addon/custom.xxe_gui (see XMLmind XML Editor - Customizing the
User Interface), add something like this:

<toolBarltems name="configSpecificToolBarltems2'">
<class>com.xmImind.xmleditapp.kit.part.ConfigSpecificToolBarltems</class>
<property name="specificationName" type="String" value="toolBar2" />
</toolBarltems>

<toolBar name="configSpecificToolBar2">
<toolBarltems name="configSpecificToolBarltems2" />
</toolBar>

<layout>
<topToolBars>
<insert />
<toolBar name="configSpecificToolBar2" />

58

../gui/index.html
../gui/index.html

Configuration elements

</topToolBars>
</layout>

24. translation

<translation
| ocati on = anyURI matching [pat h/]resour cenane_| ang.properties
/>

Specifies how to translate messages found in menu item label, toolBar button toolTip, template name, element-
Template name, css name, binding menu item label, etc.

Localizing configuration files works as follows:

1. The location attribute points to a Java™ property file. XHTML example:
<translation location="xhtml_en.properties" />

<item label="Pre_view" icon="../common/icons/Refresh16.gif"
command=""xhtml .preview'>
<accelerator code="F5" />
</item>
</menu>

Where xhtml_en_properties contains:

preview=Pre_view
convertTol=Convert to i
convertToB=Convert to b

The location URL specifies:

» The reference language of the configuration file: a two-letter lower-case 1SO code. In the above example:
en.

« A unique resource name used to find translations to other languages. In the above example: xhtml. More
on this below.

The reference property file is only used to map messages to message 1Ds. Example: message "Convert to
i" has ID "convertTol".

2. If, for example, XXE is started using a French locale, a property file called xhtml_fr_properties:
« s searched in the same directory as the reference property file;

« OR, if this file is not found there, this property file is searched as a resource using the CLASSPATH. That
is, xhtml_fr_properties is supposed to be contained? in a jar file found in the CLASSPATH.

For performance reasons, language variants such CA in fr-CA are not supported.

3. Forthe localization to work, the translated property file must refer to the same IDs as those found in reference
property file.

For example, xhtml_fr.properties contains:

preview=Prévisualiser
convertTol=Convertir en i

IDirectly contained, and not contained in a “folder". That is, "jar tvFf foo.jar" must display xhtml_fr_properties and not
foo/bar/xhtml_fr_properties

59

Configuration elements

convertToB=Convertir en b

25. windowLayout

<windowLayout>
Content (in any order): center [top]? [bottom]?
[left 1? [right 17
</windowLayout>

<center
css = non enpty token
/>

<top

css = non enpty token

size = double between 0 and 1 exclusive : 0.25
/>

<bottom

css = non enpty token

size = double between 0 and 1 exclusive : 0.25
/>

<left

css = non enpty token

size = double between 0 and 1 exclusive : 0.25
/>

<right

css = non enpty token

size = double between 0 and 1 exclusive : 0.25
/>

By default, XXE creates a single view when a document is opened. This view is the tree view if no CSS style
sheets are available for the opened document. This view is a styled view using first non-alternate CSS style sheet
if one or more style sheets are available for the opened document.

The windowLayout element allows to force XXE to automatically create several views for the same document
when this document is opened. This is similar to using menu item View|Add... except that these actions have been
automated.

Child elements center, top, bottom, left, right specify which view to add and where it is added. Note that
having a center child element is required.

The css attribute of these child elements specify which CSS style sheet to use. An absent css attribute means that
a tree view is to be used.

The size attribute of the four ““border views": top, bottom, left, right, specify the proportional size of the view.
For example: <top.size="0.25"/> means that a tree view will occupy one fourth of the available height and that
this tree view will be found above the central, main view.

Two DocBook examples:

<windowLayout>

<center css="DocBook" />

<bottom css="Document structure' size="0.15" />
</windowLayout>

<windowlLayout>
<left />
<top css="Document structure' />
<center css="DocBook"™ />
</windowLayout>

60

Configuration elements

<Css
<Css

<Css

<Css

name=""DocBook" location="css/docbook.css" />
name=""Images displayed as thumbnails" alternate="true"
location="css/thumbnails.css" />

name="Visible inclusions and locations" alternate='"true"
location="css/visible_inclusions.css" />

name=""Document structure'" alternate="true"
location="css/structure.css" />

61

