
XMLmind XML Editor - Support of
RELAX NG Schemas

Hussein Shafie, Pixware <xmleditor-support@xmlmind.com>
December 2, 2005

Abstract

This document describes how RELAX NG schemas are supported by XMLmind XML Editor.

Table of Contents
1. Implementation of RELAX NG in XMLmind XML Editor ... 1
2. Specifying which RELAX NG schema to use for validating a document .. 2

2.1. The relaxng configuration element ... 2
2.2. The <?xxe-relaxng-schema> processing instruction .. 2
2.3. Sample XXE configurations using RELAX NG schemas ... 3

3. XMLmind XML Editor-friendly content models ... 3
3.1. The non-validating, lenient, editing mode .. 6
3.2. Problems with attributes .. 8
3.3. Help provided by the "Show Content Model" window ... 10
3.4. Other content models which are not XXE-friendly .. 12

4. Command line tools ... 13
4.1. rngvalid .. 13
4.2. rngdoc .. 14

5. Missing features ... 14

1. Implementation of RELAX NG in XMLmind XML Editor
The implementation of RELAX NG in XMLmind XML Editor (XXE for short) is based on Jing, an OpenSource,
industrial strength, streaming validator written by James Clark.

The trimmed version of Jing included in XXE (relaxng.jar) is used

• to load and validate RELAX NG schemas associated to XML documents (XML and compact syntaxes are
both supported);

• to fully validate XML documents conforming to RELAX NG schemas, each time these documents are opened
and saved, and each time a full validation is explicitly requested by the user (command Tools|Check Validity).

Jing is not used to implement guided editing. That is, Jing is not used to determine the content model of the element
being edited. A quick, incremental, version of the algorithm that computes the derivative of a pattern is used for
that.

The implementation of W3C XML Schema Datatypes used in RELAX NG schemas (e.g. xsd:int) is the work
of XMLmind. This implementation is very different from the implementation of W3C XML Schema Datatypes
included in the original Jing. This implementation is shared by the version of Jing included in XXE and by our
own W3C XML Schema validator.

XXE supports attribute default values as specified in RELAX NG DTD Compatibility. The compatibility of the
schema with this feature is (very strictly) checked by XXE and not by Jing. This means that a schema found valid
by Jing but improperly using this feature will be rejected by XXE.

1

http://www.relaxng.org/
http://www.relaxng.org/
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/xmlschema-2/
http://www.relaxng.org/compatibility-20011203.html

2. Specifying which RELAX NG schema to use for valid-
ating a document
This section is just a primer. The reference documentation about this topic is really XMLmind XML Editor -
Configuration and Deployment.

2.1.The relaxng configuration element

A document type declaration (<!DOCTYPE>) can be used to associate a DTD to a document. Attributes
xsi:schemaLocation/xsi:noNamespaceSchemaLocation can be used to associate W3C XML Schemas to a
document. But there is no standard way to associate a RELAX NG schema to a document. Therefore this association
must be made using an external specification such as the Namespace Routing Language (NRL).

In the case of XMLmind XML Editor, this external specification is simply a configuration element called relaxng.

XHTML example:

<configuration name="XHTML Strict [RELAX NG]"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns="http://www.xmlmind.com/xmleditor/schema/configuration">
 <include location="xxe-config:schema/ns_xhtml.incl" />

 <detect>
 <rootElementNamespace>http://www.w3.org/1999/xhtml</rootElementNamespace>
 </detect>

 <relaxng name="http://www.w3.org/1999/xhtml" 1

 location="xxe-config:common/rng/xhtml1/xhtml-strict.rng" />

 <preserveSpace elements="html:pre html:style html:script" /> 2

 <css name="XHTML" location="xhtml_rng.css" />
 <template name="Page" location="page.html" />
</configuration>

1 The name attribute, which is similar to the public ID of a DTD, is absolutely not required. However, if it is
absent, the corresponding RELAX NG schema cannot be cached by XXE.

2 Unlike the DTD, xhtml-strict.rng does not specify a preserve default value for attribute xml:space of
elements such as pre. Therefore, the preserveSpace configuration element must be used to specify whitespace-
preserving elements.

2.2.The <?xxe-relaxng-schema> processing instruction

This processing instruction is a non standard, proprietary, way to associate a document to a RELAX NG schema.
Its use should be restricted to testing and other quick and dirty experiments.

DocBook example:

<?xml version="1.0" encoding="UTF-8" ?>
<?xxe-relaxng-schema name="-//OASIS//RELAX NG DocBook V4.3//EN" 1

 location="http://www.docbook.org/rng/4.3/docbook.rnc"
 compactSyntax="true" encoding="US-ASCII" ?>

<!DOCTYPE article [2

<!ENTITY % sgml.features "IGNORE">
<!ENTITY % xml.features "INCLUDE">

<!ENTITY euro "€">

<!ENTITY % dbcent PUBLIC
"-//OASIS//ENTITIES DocBook Character Entities V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/dbcentx.mod">

2

XMLmind XML Editor - Support of
RELAX NG Schemas

../configure/index.html
../configure/index.html
http://www.thaiopensource.com/relaxng/nrl.html

%dbcent;

]>

<article>
 <title></title>
 <section>
 <title></title>
 <para></para>
 </section>
</article>

1 The <?xxe-relaxng-schema> processing instruction has pseudo-attributes identical to the attributes of the
relaxng configuration element.

2 Using a RELAX NG schema should not prevent you from specifying a document type declaration for char-
acter entities.

2.3. Sample XXE configurations using RELAX NG schemas

The examples used in this section come from two ready-to-use XXE configurations:

docbook5/

Allows to create and edit DocBook V5.0b1 documents conforming to the RELAX NG schema coming from
DocBook.org.

Caution

Do not use this schema and its associated configuration for serious work. This configuration has been
created mainly to test the support of RELAX NG in XXE.

xhtml_rng/

Allows to create and edit XHTML 1.0 documents conforming to the modular RELAX NG schema written by
James Clark.

Note that these two configurations do not conflict with the DTD-based XHTML and DocBook configurations
which are bundled with XXE.

These configurations are found in XXE_install_dir/doc/rngsupport/config/. To use any of them, simply
copy the corresponding directory to

• XXE_install_dir/addon/

• OR to XXE_user_preferences_dir/addon/ (recommended). XXE user preferences directory is:

• $HOME/.xxe/ on Unix,

• %SystemDrive%\Documents and Settings\%USERNAME%\Application Data\XMLmind\XMLeditor\ on
Windows 2000/XP,

• %SystemDrive%\winnt\Profiles\%USERNAME%\Application Data\XMLmind\XMLeditor\ on Windows
NT.

For example, to create DocBook documents conforming to a RELAX NG schema, on Windows, copy XXE_in-

stall_dir/doc/rngsupport/config/docbook5/ to %SystemDrive%\Documents and Settings\%USERNAME%\Ap-

plication Data\XMLmind\XMLEditor\addon\.

3. XMLmind XML Editor-friendly content models
Validating a document against a RELAX NG schema is similar to matching some text against a regular expression.
If the document ``matches'' the schema, the document is valid, and this, no matter which sub-expressions were
used during the match.

3

XMLmind XML Editor - Support of
RELAX NG Schemas

http://docbook.org/docbook-ng/lillet/index.html
http://docbook.org/docbook-ng/lillet/index.html
http://www.thaiopensource.com/relaxng/xhtml/
http://www.thaiopensource.com/relaxng/xhtml/

Example: string "b" matches regular expression "(a?,b)|(b,c?)" and we don't care if it matches sub-expression
"(a?,b)" or sub-expression "(b,c?)". The situation is exactly the same with RELAX NG schemas, simply replace
the characters and the character classes used in a regular expression by RELAX NG patterns.

The job of a RELAX NG schema is a validate a document as a whole, and that's it. For XXE, the problem to solve
is different. One of the main jobs of XXE is to guide the user when he/she edits an XML document. That is, one
of the main jobs of XXE is to identify the content model of the element which is being edited, in order to suggest
the right attributes and the right child elements for it.

To do that, XXE needs to know precisely which ``sub-expressions were used during the match''. Unfortunately,
sometimes, this is impossible to do.

All examples used in this section are found in XXE_install_dir/doc/rngsupport/samples/. Note that they are
all valid schemas and valid documents.

4

XMLmind XML Editor - Support of
RELAX NG Schemas

Example 1. Ambiguous elements

RELAX NG schema, target.rnc:

start = build-element

build-element = element build {
 target-element*
}
target-element = element target {
 attribute name { xsd:ID },
 element list { ref-element* }?,
 element list { action-element* }?
}
ref-element = element ref {
 attribute name { xsd:IDREF }
}
action-element = element action { text }

Document conforming to the above schema, target_bad.xml:

<build>
 <target name="all">
 <list>
 </list>
 </target>

 <target name="compile"/>
 <target name="link"/>
</build>

If you open target_bad.xml in XXE and select the list element, XXE is lost: is it the list element which contains
refs or is the list element which contains actions? Both list content models are fine in the case of an empty
list element!

Now, if you open target_good.xml in XXE, there is no problem at all:

<build>
 <target name="all">
 <list>
 <ref name="compile"/>
 <ref name="link"/>
 </list>
 <list>
 <action>cc -c *.c</action>
 <action>cc *.o</action>
 </list>
 </target>

 <target name="compile"/>
 <target name="link"/>
</build>

The previous examples show that:

Important

XXE cannot make a difference between two child elements having the same name and having different
content models, unless these two child elements have themselves distinct attributes and/or distinct child
elements.

RELAX NG schema, sect.rnc:

start = doc-element

doc-element = element doc {
 (simple-sect|

5

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/target.rnc
samples/target_bad.xml
samples/target_good.xml
samples/sect.rnc

 recursive-sect)+
}
simple-sect = element sect {
 attribute class {"simple"}, paragraph-element*
}
recursive-sect = element sect {
 attribute class {"recursive"}, (recursive-sect|simple-sect)*
}
paragraph-element = element paragraph { text }

Document conforming to the above schema, sect.xml:

<doc>
 <sect class="recursive">
 <sect class="recursive"></sect>

 <sect class="simple">
 <paragraph>Paragraph 2.</paragraph>
 </sect>
 </sect>

 <sect class="simple"></sect>
</doc>

XXE has no problem at all with empty <sect class="recursive"> and empty <sect class="simple"> because
these elements have the same required attribute class but with different fixed values. However, it is easy to defeat
XXE by slightly modifying the schema.

RELAX NG schema, sect2.rnc:

start = doc-element

doc-element = element doc {
 (simple-sect|
 recursive-sect)+
}

simple-sect = element sect {
 attribute class {"simple"}, paragraph-element*
}

recursive-sect = element sect {
attribute class {"recursive"}?, (recursive-sect|simple-sect)*

}

paragraph-element = element paragraph { text }

Document conforming to the above schema, sect2.xml:

<doc>
 <sect>
 <sect></sect>

 <sect class="simple">
 <paragraph>Paragraph 2.</paragraph>
 </sect>
 </sect>

 <sect class="simple"></sect>
</doc>

3.1.The non-validating, lenient, editing mode

When XXE is ``lost'', it automatically enters a lenient editing mode. In this mode, XXE can no longer guide the
user when he/she edits the element which poses problems.

The node path bar is used to signal elements which are in this non-validating, lenient editing mode:

6

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/sect.xml
samples/sect2.rnc
samples/sect2.xml

• An element underlined in red means that this element is in non-validating mode 2. In this mode, XMLmind
XML Editor is not able to suggest the right attributes and the right child elements to the user. The user may
add and remove any attributes and child elements he/she wants, at any place and in any number.

Figure 1. XXE is completely lost when empty list is selected

• An element underlined in orange means that this element is in non-validating mode 1. In this mode, XMLmind
XML Editor still suggests the right attributes and child elements to the user. But these are only suggestions:
the user may add and remove any attributes and child elements he/she wants, and this, at any place and in any
number.

Figure 2. XXE has problems when target containing empty list is selected

Note that the lenient editing mode is local to an element and its descendants. It is not used for the whole document,
but just for the element for which XXE has troubles.

7

XMLmind XML Editor - Support of
RELAX NG Schemas

Figure 3. XXE has no problem at all when target named compile is selected

Also note that, after modifying an element which poses problems to XXE, if these problems are solved, XXE will
automatically switch to its normal, strict, validating mode.

3.2. Problems with attributes

Important

XXE cannot make a difference between two attributes (within the same element) having the same name
and having different content models, unless these two attributes have both fixed values.

8

XMLmind XML Editor - Support of
RELAX NG Schemas

Example 2. Same attribute name, different content models

RELAX NG schema, person.rnc:

start = persons-element

persons-element = element persons {
 person-element+
}
person-element = element person {
 (attribute age { xsd:int } |
 (attribute age { "seeBirthDate" },
 attribute birthDate { xsd:date })),
 element firstName { text },
 element lastName { text }
}

Document conforming to the above schema, person.xml:

<persons>
 <person age="33">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </person>

 <person age="seeBirthDate" birthDate="1980-04-15">
 <firstName>Erica</firstName>
 <lastName>Kyle</lastName>
 </person>
</persons>

XXE has problems with attribute age. It cannot make a difference between attribute age which contains an integer
and attribute age which contains fixed value seeBirthDate, even if this seems very easy to do. For performance
reasons, XXE does not attempt to be very smart for what it considers to be rare cases.

Note that if you replace attributes age and birthDate by similar child elements age and birthDate, XXE will
behave exactly the same. See person2.rnc and person2.xml.

Important

XXE cannot make a difference between two child elements having the same name and having different
data-only content models, unless these two child elements have both fixed values.

9

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/person.rnc
samples/person.xml
samples/person2.rnc
samples/person2.xml

Example 3. Same attribute name, different fixed values

RELAX NG schema, div.rnc:

start = doc-element

doc-element = element doc {
 div-element+
}
div-element = element div {
 (attribute class {"section"}, div-element+) |
 (attribute class {"paragraphs"}, paragraph-element+)
}
paragraph-element = element paragraph { text }

Document conforming to the above schema, div.xml:

<doc>
 <div class="section">
 <div class="section">
 <div class="paragraphs">
 <paragraph>Paragraph 1.</paragraph>
 </div>
 </div>

 <div class="paragraphs">
 <paragraph>Paragraph 2.</paragraph>
 </div>
 </div>

 <div class="paragraphs">
 <paragraph>Paragraph 3.</paragraph>
 </div>
</doc>

XXE has no problem at all with attribute class, because even if there are two attributes named class within element
div, they have different fixed values.

Note that if you replace attribute class by similar child element class, XXE will behave exactly the same. See
div2.rnc and div2.xml.

3.3. Help provided by the "Show Content Model" window

The node path bar is not the only tool in XXE which can help the user recognize attributes and elements which
pose problems to the XML editor. The window opened by command Help|Show Content model also displays very
useful information.

10

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/div.rnc
samples/div.xml
samples/div2.rnc
samples/div2.xml

Figure 4. Person.xml example when element person is selected

Figure 5. Div.xml example when element div is selected

11

XMLmind XML Editor - Support of
RELAX NG Schemas

3.4. Other content models which are not XXE-friendly

Example 4. Not specific to RELAX NG

RELAX NG schema, name.rnc:

start = names-element

names-element = element names {
 name-element+
}
name-element = element name {
 element fullName { text } |
 (element firstName { text } & element lastName { text })
}

Document conforming to the above schema, name.xml:

<names>
 <name><fullName>John Smith</fullName></name>

 <name><firstName>John</firstName><lastName>Smith</lastName></name>

 <name><lastName>Smith</lastName><firstName>John</firstName></name>
</names>

XXE allows to replace the firstName, lastName pair by a fullName. Simply select both child elements and use
command Edit|Replace. But it is impossible to replace a fullName by a firstName, lastName pair.

The only way to do this is to select the fullName to be replaced and then, to use command Edit|Force Deletion.
This will force XXE to enter the lenient editing mode. Remember that in this mode, the user is allowed to add any
child elements he/she wants, including a firstName, lastName pair1.

Note that the above example is not specific to RELAX NG. It is possible to model this kind of content with a DTD
or a W3C XML Schema.

The example below is very similar but can only be expressed using a RELAX NG schema. This is the case, because,
unlike a DTD and a W3C XML Schema, a RELAX NG schema can be used to specify the places within an element
where text nodes may occur.

1The right approach here is to define two named element templates for element name, one containing a fullName child element and the
other containing a firstName, lastName pair.

12

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/name.rnc
samples/name.xml

Example 5. Specific to RELAX NG

RELAX NG schema, name2.rnc:

start = names-element

names-element = element names {
 name-element+
}
name-element = element name {
 text |
 (element firstName { text } & element lastName { text })
}

Document conforming to the above schema, name2.xml:

<names>
 <name>John Smith</name>

 <name><firstName>John</firstName><lastName>Smith</lastName></name>

 <name><lastName>Smith</lastName><firstName>John</firstName></name>
</names>

The situation is worse with the name2.rnc example than with the name.rnc example. It is always allowed to delete
a text node and this includes the text node containing "John Smith". That is, there is no way to force XXE to enter
its lenient mode in order to be able to replace text node "John Smith" by a firstName, lastName pair.

In such case, using named element templates is the only way to cope with such content models. Simply specify
two named element templates for element name, one containing a text node with a placeholder string and the other
containing a firstName, lastName pair.

4. Command line tools

4.1. rngvalid

Rngvalid is a script which is used to invoke the version of Jing included in XXE (relaxng.jar).

Usage: rngvalid ?options? relax_ng_schema ?xml_document ... xml_document?

Validate documents xml_document ... xml_document against schema relax_ng_schema. If documents are not
specified, just validate the schema.

Options are (what follows is copied from the documentation of Jing):

-c
The schema uses RELAX NG Compact Syntax.

-e enc

Uses the encoding enc to read the schema.

-f
Checks that the document is feasibly valid. A document is feasibly valid if it could be transformed into a valid
document by inserting any number of attributes and child elements anywhere in the tree. This is equivalent
to transforming the schema by wrapping every data, list, element and attribute element in an optional
element and then validating against the transformed schema. This option may be useful while a document is
still under construction. This option also disables checking that for every IDREF there is a corresponding ID.

-i
Disables checking of ID/IDREF/IDREFS. By default, Jing enforces the constraints imposed by RELAX NG
DTD Compatibility with respect to ID/IDREF/IDREFS.

13

XMLmind XML Editor - Support of
RELAX NG Schemas

samples/name2.rnc
samples/name2.xml
samples/name2.rnc
samples/name.rnc
http://www.thaiopensource.com/relaxng/jing.html

-t
Prints the time used by Jing for loading the schema and for validation.

Examples:

C:\Program Files\XMLmind_XML_Editor> rngvalid demo\bugreport\bugreport.rng

C:\Program Files\XMLmind_XML_Editor> rngvalid demo\bugreport\bugreport.rng \
 demo\bugreport_rng.xml

C:\Program Files\XMLmind_XML_Editor> rngvalid -c doc\rngsupport\samples\target.rnc

C:\Program Files\XMLmind_XML_Editor> rngvalid -c doc\rngsupport\samples\target.rnc \
 doc\rngsupport\samples\target_good.xml doc\rngsupport\samples\target_bad.xml

4.2. rngdoc

Rngdoc can be used to generate an HTML reference manual for a RELAX NG schema.

The generated HTML reference manual, organized like "DocBook: The Definitive Guide" by Norman Walsh and
al., lists all elements and attributes specified in the schema.

This manual is intended to help content authors create instances conforming to a given RELAX NG schema. This
manual is not intended to help schema authors document their design.

Usage: rngdoc ?options? relax_ng_schema out_dir

Generate an HTML reference manual for schema relax_ng_schema in directory out_dir.

Options are:

-rnc
Specifies that relax_ng_schema uses the compact syntax. Default: XML syntax.

-rncencoding rnc_charset

Specifies the character encoding of the schema using the compact syntax. Default: platform default encoding.

-css CSS_URL

Specifies which CSS style sheet to use in the generated HTML. Default: no CSS.

-charset html_charset

Specifies the character encoding of the generated HTML. Default: platform default encoding.

-xxe
Add annotations which are useful when the RELAX NG schema is used by XMLmind XML Editor. Default:
don't annotate.

Example:

C:\Program Files\XMLmind_XML_Editor> rngdoc -xxe demo\bugreport\bugreport.rng C:\temp

5. Missing features
These features will almost certainly be implemented in future versions of XXE:

• An XXE configuration for editing RELAX NG schemas more comfortably2.

• A format plug-in for the compact syntax (probably based on Trang, an excellent multi-format schema converter
written by James Clark).

2It is already possible to open RELAX NG schemas (using the XML syntax) in XXE and automatically benefit from a full semantic validation.

14

XMLmind XML Editor - Support of
RELAX NG Schemas

http://thaiopensource.com/relaxng/trang.html

• include and externalRef elements in RELAX NG schemas are XML catalog aware, but the equivalent
notations in the compact syntax are not yet XML catalog aware.

15

XMLmind XML Editor - Support of
RELAX NG Schemas

