Comment identifier l'origine des émissions de CO₂ dans l'atmosphère ?

Le dioxyde de carbone (CO₂) présent dans un échantillon d'air est la résultante d'un mélange de dioxyde de carbone provenant de diverses sources (Voir figure 1) :

- CO₂ présent «naturellement dans l'atmosphère»,
- CO₂ provenant des émissions des énergies fossiles,
- CO₂ provenant des échanges avec l'océan,
- CO₂ provenant de la respiration des êtres vivants...

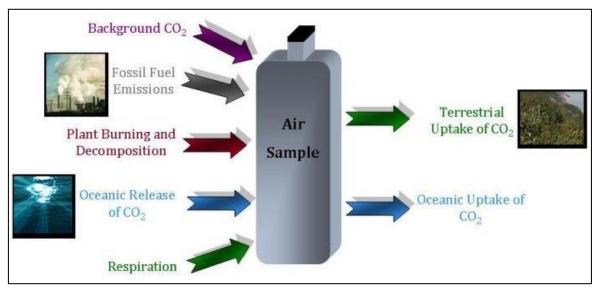


Figure 1 - Un échantillon d'air : mélange de CO₂ d'origines diverses.

Issu de http://www.esrl.noaa.gov/gmd/outreach/isotopes/mixing.html

Le CO₂ peut être formé à partir de 3 **isotopes*** du carbone.

*Isotope signifie par étymologie : même lieu (du grec ISOS : même, identique et TOPOS : lieu).

Ce sont, en effet, des éléments chimiques qui se retrouvent dans la même case que d'autres dans le tableau de Mendeleïev, car ils possèdent les mêmes propriétés chimiques.

Ils ont le même nombre de protons et d'électrons, mais leurs nombres de neutrons sont différents.

Ces éléments ont les mêmes propriétés chimiques puisque ces propriétés sont déterminées par le nombre d'électrons et celui-ci reste identique.

Ces éléments n'ont pas les mêmes propriétés physiques car leur masse est différente.

1. Les isotopes du carbone

L'élément carbone existe dans la nature sous différentes formes : les isotopes (qui diffèrent par le nombre de neutrons) :

- le¹²C, isotope stable le plus présent,
- le ¹³C, autre isotope stable peu présent,
- le ¹⁴C, isotope instable peu présent qui se désintègre en fonction du temps,

Grâce aux **isotopes*** du carbone, les scientifiques établissent une <u>empreinte isotopique</u> appelé $\underline{\delta C}$ (correspondant à un rapport) qui permet de connaître précisément la source du CO_2 additionnel qui s'ajoute chaque année dans l'atmosphère.

- 2. Les isotopes stables ¹²C et ¹³C dans les différentes enveloppes terrestres (Voir figure 2)
- L'atmosphère a un rapport de 13 C / 12 C ou δ^{13} C de -8‰,
- L'hydrosphère a un rapport de 13 C / 12 C ou δ^{13} C de -10‰, très similaire à celui de l'atmosphère.

- La biosphère terrestre a un rapport de 13 C $/^{12}$ C ou δ^{13} C de -26‰, très éloigné de celui de l'atmosphère. En effet lors de la photosynthèse, le 12 C est davantage absorbé que le 13 C lors de la diffusion du CO₂ au niveau des stomates foliaires puis, le 12 C est davantage fixé sous forme de sucres simples que le 13 C. Pour ces deux raisons, il y a moins de 13 C que de 12 C dans les tissus de la biosphère.
- Les combustibles fossiles ont un rapport de 13 C $/^{12}$ C ou δ^{13} C de -28‰, donc comportent également moins de 13 C que de 12 C ce qui se comprend aisément vu qu'ils proviennent d'anciens végétaux.

Source de CO ₂	Valeur du δ ¹³ C en (‰)
Combustibles fossiles	-28
Biosphère terrestre	-26
Hydrosphère (océans)	-10
Atmosphère	-8

Figure 2 - Rapports isotopiques δ^{13} C pour différentes sources de CO₂

Issu de http://www.esrl.noaa.gov/gmd/outreach/isotopes/mixing.html

3. Quelle interprétation donner aux valeurs du δ¹³C du CO₂ et à leurs variations ? (Voir figure 3)

Au laboratoire on mesure le rapport de 13 C $/^{12}$ C ou δ^{13} C du CO₂ sur des échantillons d'air.

Sachant que:

- le rapport isotopique δ¹³C du CO₂ dans l'atmosphère est constitué à partir d'un mélange de sources (Figure 1),
- l'empreinte isotopique δ^{13} C de chaque source est unique (Figure 2),

les scientifiques peuvent identifier l'origine des variations du δ^{13} C du CO_2 dans l'atmosphère.

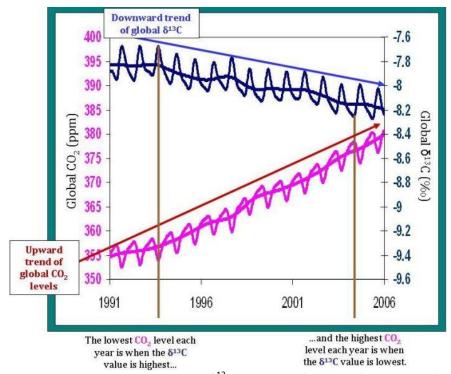


Figure 3 - Evolution du CO_2 total et du $\delta^{13}C$ du CO_2 de l'atmosphère de 1991 à 2006

Issu de http://www.esrl.noaa.gov/gmd/outreach/isotopes/c14tellsus.html

On constate une diminution des valeurs du δ^{13} C au fil du temps : la quantité relative de d'atomes 13 C est de moins en moins importante par rapport à celle de 12 C dans le CO₂ atmosphérique.

Cette tendance s'explique par l'ajout de CO₂ dans l'atmosphère qui doit venir de la biosphère terrestre et/ou des combustibles fossiles.

4. L'isotope instable ¹⁴C et combustibles fossiles (Voir figure 4)

Le ¹⁴C est constamment produit dans la haute atmosphère sous l'effet des rayonnements solaires à haute énergie à partir de l'azote. Les végétaux peuvent l'incorporer dans leur matière organique à la suite de la photosynthèse. Ces végétaux sont à l'origine des combustibles fossiles que l'homme utilise depuis l'avènement de l'ère industrielle.

Le ¹⁴C est radioactif et possède une demi-vie de 5730 ans. Or, on admet qu'au bout de 10 demi-vies (soit 57 300 ans), la quantité d'isotope peut être considérée comme négligeable.

De ce fait, tout le ¹⁴C initialement présent dans les combustibles fossiles que nous utilisons s'est désintégré (datés de plusieurs millions d'années), ne laissant aucun ¹⁴C dans cette ancienne matière organique.

La combustion massive de ces combustibles fossiles devrait donc faire diminuer la concentration atmosphérique en ¹⁴C.

Le 14C constitue donc un traceur idéal du CO₂ provenant de la combustion de combustibles fossiles.

Au laboratoire américain NOAA chargé des analyses de l'air, on mesure le δ^{14} C, rapport isotopique qui quantifie la proportion 14 C/ 12 C du carbone dans chaque échantillon d'air.

Pour des informations plus précises sur les calculs de ce rapport : http://www.esrl.noaa.gov/gmd/outreach/isotopes/deltavalues.html

Les différentes sources possibles de CO₂ possèdent leur propre **empreinte isotopique δ¹⁴C** (Voir Figure 4)

Source de CO2	Valeur du Δ14C (‰)
Combustibles fossiles	-1000
Biosphère terrestre	+45
Océan	+45
Atmosphère	+45

Figure 4 - Rapports isotopiques δ^{14} C pour différentes sources de CO2

Issu de http://www.esrl.noaa.gov/gmd/outreach/isotopes/deltavalues.html

5. Quelle interprétation donner aux valeurs du δ¹⁴C du CO₂ et à leurs variations ? (Voir figure 5)

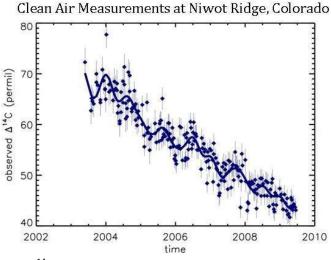


Figure 5 - Evolution du δ^{14} C mesuré dans l'air propre à Niwot Ridge (1 point = 1 échantillon)

Issu de http://www.esrl.noaa.gov/gmd/outreach/isotopes/c14tellsus.html

On constate une tendance à la baisse du δ^{14} C du CO_2 l'air ce qui montre que le CO_2 supplémentaire ajouté à l'atmosphère provient des émissions dues à la combustion des combustibles fossiles.

L'atmosphère actuelle a environ 380 parties par million, ou ppm, de CO_2 , avec $\delta^{14}C$ de 45 %. Si l'on ajoute 1 ppm de CO_2 issu de la combustion de combustibles fossiles, avec un $\delta^{14}C$ de -1000 %, alors la nouvelle valeur de $\delta^{14}C$ dans l'atmosphère connait une variation sensible pour s'établir à 42 %.

A l'inverse, si on ajoute 1 ppm de CO_2 issu d'un feu de forêt, les émissions de CO_2 de l'incendie aurait la même valeur $\delta^{14}C$ que l'atmosphère (ou très proche). Le $\delta^{14}C$ atmosphérique ne changerait donc pas.

