Génétique |
|
|
|||||||||||||||||||||||||||||||||
Partenaires | Recherche | Synthèses | Points | Ressources | Démarches | Biblio | Sites | ||||||||||||||||||||||||||||
Mise
à jour : 14/08/2001
Glossaire Histoire Questions Téléchargements
|
Réplication de l'ADN : Jean François Héron, Faculté de médecine, Centre François Baclesse 14021 Caen jfheron@baclesse.fr
Les phases du cycle cellulaire On appelle cycle cellulaire l’intervalle entre chaque
division cellulaire
On appelle G0 l’état de repos des cellules qui ne se divisent pas.
Entre ces différentes étapes, se situent des points de contrôle ou ‘check-point’, qui ont pour but de vérifier l’intégrité de la transmission du DNA de la cellule mère vers les cellules filles. Les principaux points de contrôle décrits sont : Chacune des étapes du cycle cellulaire est sous la dépendance de mécanismes régulateurs avec des rétro contrôles (ou feed back), en rapport avec des protéines ou des glycoprotéines dont l’existence, la structure et le rôle sont toujours en train d’être découverts ou mieux définis. Il existe, en outre, des mécanismes de régulation positifs et négatifs en rapport avec la situation de la cellule normale (multiplication réactionnelle, cicatrisation, contrôle de l’homéostasie, etc.). Ces mécanismes ne sont pas tous connus et impliquent les voies de transmission du signal entre le milieu extra-cellulaire, la membrane cellulaire, le cytoplasme et les molécules du noyau.
La synthèse de DNA ou phase S Le détail de la synthèse du DNA sera détaillé dans le paragraphe suivant. La durée de cette phase est variable, de quelques minutes pour les cellules embryonnaires à plusieurs heures pour la plupart des cellules somatiques. Pour celles-ci, en effet, pendant cette phase, la cellule continue à transcrire activement les gènes des protéines nécessaires à leur survie et au maintien des fonctions spécialisées. Pendant la phase S, la cellule dédouble aussi le centrosome, nécessaire à la migration des chromosomes. Les deux centrosomes migrent autour du noyau et se positionnent de façon diamétralement opposée. La phase M La phase M, ou mitose, est la période de division cellulaire : les chromosomes, le matériel nucléaire et cytoplasmique sont divisés entre les deux cellules filles. Le contenu en DNA passe ainsi de 4N à 2N. Au cours de cette phase, le rôle des microtubules du fuseau est particulièrement important. La durée de la phase M est en général très court, inférieure à une heure. Description histologique de la phase M La phase M s'observe facilement au microscope, avec la condensation des chromosomes (prophase) dans le noyau encore intact. Puis survient la séparation des deux centrosomes qui se placent aux deux pôles (ou asters) d'un faisceau de microtubules et de protéines, le fuseau mitotique. Puis les microtubules astériens se désagrègent et de nouveaux microtubules s'assemblent en se dirigeant vers les chromosomes très condensés. L'enveloppe nucléaire se disperse. Les chromosomes s'alignent au milieu du fuseau, pour former la plaque métaphasique (métaphase).
Les deux cellules filles se séparent, les chromosomes disparaissent pour laisser place à une chromatine fine diffuse, l'enveloppe nucléaire se reforme, puis la membrane cytoplasmique, et un nouveau réseau de microtubules apparaît dans le cytoplasme (Télophase). Rôle des microfilaments Les microtubules sont des tubes creux composés de protofilaments (en général 13) formés par l'assemblage d'hétérodimères de chaînes a et b de tubuline.
La molécule de tubuline est, par nature, instable (instabilité dynamique) : en présence de protéine kinase, sa taille s’accroît (polymérisation GTP dépendante) ; en présence de phosphatase, elle décroît (dépolymérisation par phosphorylation). La phosphokinase cdk1 est l'agent qui apporte le phosphate. Pendant l'interphase, une des fonctions du microtubule est le transport des vésicules cytoplasmiques par des 'moteurs protéiques' se déplaçant le long des microtubules soit vers l'extrémité positive (kinésines) soit vers l'extrémité négative (dinéines).
On verra, plus loin, que certains médicaments anticancéreux agissent sélectivement au niveau de la tubuline (perte de l'instabilité dynamique) et du fuseau. Phase G2 C'est la phase séparant la synthèse d'une copie du DNA nucléaire de la séparation physique des deux cellules. Sa durée est extrêmement nstante et le plus souvent courte (quelques heures au maximum). Il s'agit d'une phase automatique : les cellules entrées dans la phase S aboutissent toujours à la phase M. C'est une phase de contrôle de la bonne transcription du matériel génétique, impliquant des gènes et des protéines importants pour le bon déroulement de la mitose. Phase G1 C'est la phase du cycle cellulaire dont la durée est la plus longue, et la plus variable selon le type cellulaire. Le temps passé en G1 est inversement proportionnel au taux de prolifération. Lorsque les conditions extérieures ne sont pas favorables à la prolifération, les cellules s'arrêtent en G1 : les cellules déjà impliquées dans une division (phase S, G2 ou M) la complètent pour arriver en phase G1. Pendant cette phase, la cellule croît en taille, et fabrique les protéines cytoplasmiques qui seront ensuite divisées pour les cellules filles. Phase G0 On appelle ainsi une période, plus ou moins longue, pendant laquelle la cellule est dans un état de repos, non prolifératif. Ces cellules contiennent un matériel nucléaire 2N, et ressemblent, au microscope, aux cellules en G1. Cependant, elles n'ont pas le même métabolisme protéique ou du RNA. Certaines cellules terminales sont dans un état G0 définitif, comme les polynucléaires ou les neurones. D'autres peuvent, sous l'effet de facteurs externes, passer de l’état de repos G0 à l’état actif G1 (ainsi les hépatocytes après hépatectomie partielle, ou les lymphocytes avant la stimulation antigénique
L'organisation du génome : la molécule de DNA L'information génétique est stockée dans les deux chaînes de DNA, longs polymères non branchés de nucléotides, constitués d'un sucre (le déoxyribose), un groupe phosphate et une base purique ou pyrimidique. Les règles de Watson et Crick montrent que les deux chaînes sont complémentaires : des couples de bases Adénine et Thymine ainsi que Guanine et Cytosine sont constitués sous l'effet de ponts hydrogènes entre les bases. La double hélice est une molécule relativement rigide. Dans sa forme B, les arêtes créées par les groupements phosphates définissent deux sillons : le petit et le grand sillon, seul endroit où les bases sont accessibles aux protéines.
Le software basique de la génétique : le réarrangement des bases La capacité des molécules de DNA à stocker l'information génétique réside dans l'arrangement des séquences de bases le long du polymère sous forme de codons de trois bases. Les informations utiles pour la synthèse des protéines se trouvent sous forme de gènes séparés les uns des autres par des suites immenses de nucléotides, sans signification fonctionnelle apparente. Ces zones présentent cependant l'intérêt d'être constantes pour un même individu, et de permettre une véritable identification moléculaire ('empreintes du DNA'), certaines séquences répétitives étant faciles à repérer. La plupart des mutations surviennent dans ces zones silencieuses non géniques.
la réplication semi-conservative du DNA Lors de la division cellulaire, les deux chaînes de DNA sont séparées à une extrémité. La lecture du code génétique se fait de l'extrémité 3' vers l'extrémité 5', par appariement des bases selon la loi de Watson et Crick. La molécule fille croît donc de l'extrémité 5' vers l'extrémité 3'. Les deux molécules filles qui en résultent comportent une chaîne parentale et une chaîne dérivée (d'où le nom de duplication semi-conservative). Chaque brin de deux chaînes est formé à partir de la fourche de séparation, par une lecture immédiate de la base à compléter. La synthèse de DNA est semi discontinue, et nécessite un segment d’initiation à base de RNA ou primase. Un des brins du DNA, celui ayant l’extrémité 5’ constitue le brin leader : sa copie se fait directement par l’intermédiaire de la DNA polymérase d. L’autre brin nécessite la synthèse de petits fragments (fragments de Okazaki), en sens inverse du brin leader (de 5’ vers 3’) grâce à la même DNA polymérase d. Ces fragments sont ensuite rassemblés par une DNA polymérase I et par une DNA ligase.
Le Software : les enzymes de réplication Une première étape pour la réplication du DNA est constituée par les changements de forme topologique. Le DNA d’un chromosome qui peut mesurer jusqu'à 1 m déroulé en totalité, change sa forme super enroulée pour passer à une forme moins enroulée, dans laquelle il est accessible aux autres enzymes . Deux enzymes agissent à ce niveau :
Des protéines accessoires de la réplication existent chez l'homme : le PCNA (proliferating Cell Nuclear Antigen) est le premier décrit. Il s'agit d'un puissant activateur de la polymérase d , stimulé lors de la division cellulaire. Le PCNA semble avoir aussi un rôle dans la réparation des anomalies du DNA (cf. plus bas).
les télomères Les télomères, ou extrémités des chromosomes, sont indispensables pour préserver l’intégrité du matériel génétique au cours du cycle cellulaire. L’ADN télomérique est formé par des répétitions très régulières, en tandem, d’un motif simple de 5 à 8 paires de bases riches en guanine. Les télomères ne peuvent pas être inversés, et la répétition des guanines se traduit par la constitution de boucles, de tiges ou de structures à quatre brins, très stables. La perte du télomère ou son absence de réparation entraîne une instabilité du chromosome qui se perd dans les cellules survivantes. Si elle n’est pas réparée, cette dégradation aboutit à l’arrêt du cycle cellulaire et à la mort de la cellule.
On retrouve une activité télomérasique importante dans les cellules hautement malignes, et la présence de télomérase serait un indice de mauvais pronostic. Une voie thérapeutique nouvelle peut également être recherchée par des substances à activité anti-télomérase qui serait très spécifiques des tumeurs malignes.
|