Aller au contenu. | Aller à la navigation

Outils personnels

Plateforme - ACCES
Navigation
Vous êtes ici : Accueil / Thématiques / Neurosciences / Entrée par les programmes du collège et du lycée / Terminale Spécialité - Programme applicable dès la rentrée 2020

Terminale Spécialité - Programme applicable dès la rentrée 2020

Par Sandrine Beaudin Dernière modification 16/02/2024 15:12

PROGRAMME D'eNSEIGNEMENT en SVT ET PROPOSITIONS DE PISTES PEDAGOGIQUES

 

Nouveau programme de la spécialité SVT applicable dès la rentrée de septembre 2020 et ressources ACCES associées pour le thème "Corps humain et santé".

Programmes officiels  Bo spécial du 25 Juillet 2019

 

Thèmes - Notions du programme

Ressources proposées dans ce site

1- Comportements, mouvement et système nerveux

La contraction musculaire, mobilisée dans de nombreux comportements, résulte d’une commande nerveuse. Le mouvement induit peut être involontaire et lié à un réflexe, ou volontaire. Dans les deux cas, le système nerveux central intervient, mais de manières différentes. Le réflexe myotatique peut servir d’outil pour apprécier l'intégrité du système neuromusculaire. La transmission du message nerveux et le fonctionnement du neurone, déjà abordés au collège, voient ici leur étude approfondie pour conduire finalement à l’étude du fonctionnement du cerveau et de sa plasticité, déjà abordée dans le cas de la fonction auditive en enseignement scientifique de la classe de première.

1.1- Les réflexes

Les réflexes mettent en jeu différents éléments qui constituent l’arc-réflexe.
À partir d’une sensation de départ (stimulus) captée par un récepteur sensoriel, un message nerveux codé en potentiels d’action est élaboré. Il circule dans les neurones sensoriels jusqu’au centre nerveux (corne dorsale de la moelle épinière) où se produit le relais synaptique sur le neurone-moteur.
Celui-ci conduit le message nerveux jusqu’à la synapse neuromusculaire, qui met en jeu l’acétylcholine.
La formation puis la propagation d’un potentiel d’action dans la cellule musculaire entraînent l’ouverture de canaux calciques à l’origine d’une augmentation de la concentration cytosolique en ions calcium, provenant du réticulum sarcoplasmique pour les muscles squelettiques. Cela induit la contraction musculaire et la réponse motrice au stimulus.

  • TP EXAO : mise en evidence de l'activité réflexe et enregistrement de l'activité des muscles antagonistes

1.2- Cerveau et mouvement volontaire

Le cerveau est composé de neurones et de cellules gliales assurant le bon fonctionnement de l’ensemble.
L’exploration du cortex cérébral permet de situer les aires motrices spécialisées à l’origine des mouvements volontaires. Les messages nerveux moteurs qui partent du cerveau cheminent par des faisceaux de neurones qui « descendent » dans la moelle jusqu’aux neurones-moteurs. Le corps cellulaire du neurone-moteur reçoit des informations diverses qu’il intègre sous la forme d'un message moteur unique et chaque fibre musculaire reçoit le message d’un seul neurone moteur.
Certains dysfonctionnements du système nerveux modifient le comportement et ont des conséquences sur la santé.
L’apprentissage ou la récupération de la fonction cérébrale après un accident reposent sur une capacité essentielle : la plasticité cérébrale.

1.3- Le cerveau, un organe fragile à préserver

Les aires corticales communiquent entre elles par des voies neuronales où se propagent des potentiels d’action dont la fréquence d’émission est modulée par un ensemble de neurotransmetteurs.
La prise de substances exogènes (alcool, drogues) peut entraîner la perturbation des messages nerveux et provoquer des comportements addictifs.

  • Utilisation de LibMol pour visualier des odèles moélculaires de certaines drogues

2 - Produire le mouvement : contraction musculaire et apport d’énergie

Les mouvements mobilisent les muscles. Les organismes pluricellulaires sont constitués de cellules ayant des particularités différentes selon l’organe auxquels elles appartiennent. La cellule musculaire dispose d’une organisation structurale lui permettant de se raccourcir, ce qui entraîne la contraction du muscle. Elle a besoin d’énergie apportée sous forme d’ATP, produit à partir du glucose. L’approvisionnement des cellules musculaires en glucose nécessite le maintien de la concentration de glucose sanguin, régulé par des hormones.

2.1- La cellule musculaire : une structure spécialisée permettant son propre raccourcissement

Le muscle strié est un ensemble de cellules musculaires dites striées, organisées en faisceaux musculaires. Le raccourcissement et l’épaississement des muscles lors de la contraction musculaire permettent le mouvement relatif des deux os auxquels ils sont reliés par des tendons.
La cellule musculaire, cellule spécialisée, est caractérisée par un cytosquelette particulier (actine et myosine) permettant le raccourcissement de la cellule.
La contraction musculaire nécessite des ions calcium et l’utilisation d’ATP comme source d’énergie.
Dans certaines myopathies, la dégénérescence des cellules musculaires est due à un défaut dans les interactions entre les protéines membranaires des cellules et la matrice extra-cellulaire.

 

2.2- Origine de l’ATP nécessaire à la contraction de la cellule musculaire

L’énergie est apportée sous forme de molécules d’ATP à toutes les cellules. Il n’y a pas de stockage de l’ATP, cette molécule est produite par les cellules à partir de matière organique, notamment le glucose.
L’oxydation du glucose comprend la glycolyse (dans le hyaloplasme) puis le cycle de Krebs (dans la mitochondrie) : dans leur ensemble, ces réactions produisent du CO2 et des composés réduits NADH, H+. La chaîne respiratoire mitochondriale permet la réoxydation des composés réduits, par la réduction de dioxygène en eau. Ces réactions conduisent à la production d’ATP qui permet les activités cellulaires.
Il existe une autre voie métabolique dans les cellules musculaires, qui ne nécessite pas d’oxygène et produit beaucoup moins d’ATP.
Les métabolismes anaérobie ou aérobie dépendent du type d’effort à fournir.
Des substances exogènes peuvent intervenir sur la masse ou le métabolisme musculaire, avec des effets parfois graves sur la santé.

 

2.3- Le contrôle des flux de glucose, source essentielle d’énergie des cellules musculaires

Les cellules musculaires ont besoin de nutriments, principalement de glucose et de dioxygène, puisés dans le sang.
Les réserves de glucose se trouvent sous forme de glycogène dans les cellules musculaires et dans les cellules hépatiques. Elles servent à entretenir des flux de glucose, variables selon l’activité, entre les organes sources (intestin et foie) et les organes consommateurs (dont les muscles).
La glycémie est la concentration de glucose dans le sang, maintenue dans un intervalle relativement étroit autour d’une valeur d’équilibre proche de 1g.L-1. Elle dépend des apports alimentaires et est régulée par deux hormones sécrétées par le pancréas.
Un dysfonctionnement de la régulation de la glycémie entraîne des complications qui peuvent être à l’origine de diabètes.
L’insuline entraîne l’entrée de glucose dans les cellules musculaires (et hépatiques) et le glucagon provoque la sortie du glucose des cellules hépatiques, grâce à des protéines membranaires transportant le glucose

 

3 - Comportements et stress : vers une vision intégrée de l’organisme

Pour faire face aux perturbations de son environnement, l’organisme est capable de s’adapter : il dispose d’un ensemble de réponses adaptatives, rassemblées sous le terme de stress biologique, qui permettent un comportement approprié à la situation. Le système nerveux est impliqué dans ces mécanismes physiologiques et interagit avec les autres systèmes biologiques de l’organisme. Il s’agit d’une réponse normale de l’organisme (stress aigu). À plus long terme, la structure et le fonctionnement du cerveau peuvent être perturbés (stress chronique). L’étude de l’exemple du stress permet de comprendre la notion de boucle de régulation complète en abordant la notion de rétrocontrôle, de discerner les liens entre les systèmes physiologiques (endocrinien, nerveux, immunitaire) et d’aborder la notion de résilience. Les élèves sont sensibilisés aux dangers des médicaments « anti-stress » et à l’existence d’alternatives non médicamenteuses pour gérer le stress.

3.1- L’adaptabilité de l’organisme

Face aux perturbations de son environnement, l’être humain dispose de réponses adaptatives impliquant le système nerveux et lui permettant de produire des comportements appropriés. Le stress aigu désigne ces réponses face aux agents stresseurs.
La réponse de l’organisme est d’abord très rapide : le système limbique est stimulé, en particulier les zones impliquées dans les émotions telles que l’amygdale.

Cela a pour conséquence la libération d’adrénaline par la glande médullo-surrénale. L’adrénaline provoque une augmentation du rythme cardiaque, de la fréquence respiratoire et la libération de glucose dans le sang.
Une autre conséquence des agents stresseurs au niveau cérébral est la sécrétion de CRH par l’hypothalamus : le CRH met à contribution l’axe hypothalamo-hypophyso-corticosurrénalien, entrainant dans un second temps la libération du cortisol. Le cortisol favorise la mobilisation du glucose et inhibe certaines fonctions (dont le système immunitaire). Le cortisol exerce en retour un rétrocontrôle négatif sur la libération de CRH par l’hypothalamus et favorise le rétablissement de conditions de fonctionnement durable (résilience).
Ces différentes voies physiologiques sont coordonnées au sein d’un système, qualifié de complexe, et permettent l’adaptabilité de l’organisme.

 

 

 

 

3.2- L’organisme débordé dans ses capacités d’adaptation

Si les agents stresseurs sont trop intenses ou si leur action dure, les mécanismes physiologiques sont débordés et le système se dérègle. C’est le stress chronique.
Il peut entraîner des modifications de certaines structures du cerveau, notamment du système limbique et du cortex préfrontal. Cette forme de plasticité, dite mal-adaptative, se traduit par d’éventuelles perturbations de l’attention, de la mémoire et des performances cognitives.

Ces dérèglements engendrent diverses pathologies qui sont traitées par des médicaments dont l’effet vise à favoriser la résilience. La prise de ces médicaments, comme les benzodiazépines dans le cas de l’anxiété, doit suivre un protocole rigoureux afin de ne pas provoquer d’autres perturbations notamment une sédation et des troubles de l’attention.
Certaines pratiques non médicamenteuses sont aussi susceptibles de limiter les dérèglements et de favoriser la résilience du système. Chaque individu est différent face aux agents stresseurs, le stress intégrant des dimensions multiples et liées.

 

 

  • La femme sans peur (stress et amygdale - EduAnat2)

 

  • Mode d'action des benzodiazépines (Libmol)

 

Modèles moléculaires de quelques molécules utilisables en Terminale Specialite

 

molécule Lien vers le modèle moléculaire Source
Acétylcholine https://libmol.org/?pubchem=187 Pubchem : 187
Acéthylcholine liée à son récepteur nicotinique

https://libmol.org/?pdb=1UW6   (4 molécules)

Disponible avec une seule molécule conservée en consultant la librairie de molécules

http://www.librairiedemolecules.education.fr/molecule.php?idmol=336
PDB : 1UW6
Nicotine https://www.drugbank.ca/structures/small_molecule_drugs/DB00184

Drugbank : DB00184

 Hydrocortisone (cortisol) https://libmol.org/?pubchem=5754  
Récepteur au cortisol https://libmol.org/?pdb=4UDD&embedded=1  
Adrénaline (=Epinéphrine) https://www.drugbank.ca/structures/small_molecule_drugs/DB00668 Drugbank : DB00668
Curare (tubocurarine)
https://www.drugbank.ca/structures/small_molecule_drugs/DB01199

Drugbank : DB01199